Abstract

We have investigated a four-sector transmission polarization converter (4-SPC) for a wavelength of 633 nm, that enables the conversion of a linearly polarized incident beam into a mixture of linearly and azimuthally polarized beams. It was numerically shown that by placing a Fresnel zone plate of focal length 532 nm immediately after the 4-SPC, the incident light can be focused into an oblong subwavelength focal spot whose size is smaller than the diffraction limit (with width and breadth, respectively, measuring FWHM = 0.28λ and FWHM = 0.45λ, where λ is the incident wavelength and FWHM stands for full-width at half maximum of the intensity). After passing through the 4-SPC, light propagates in free space over a distance of 300 μm before being focused by a Fresnel zone plate (ZP), resulting in focal spot measuring 0.42λ and 0.81λ. The focal spot was measured by a near-field microscope SNOM, and the transverse E-field component of the focal spot was calculated to be 0.42λ and 0.59λ. This numerical result was verified experimentally, giving a focal spot of smaller and larger size, respectively, measuring 0.46λ and 0.57λ. To our knowledge, this is the first implementation of polarization conversion and subwavelength focusing of light using a pair of transmission micro-optic elements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tight focusing of laser light using a chromium Fresnel zone plate

V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova
Opt. Express 25(17) 19662-19671 (2017)

Tight focus of light using micropolarizer and microlens

Sergey S. Stafeev, Liam O’Faolain, Victor V. Kotlyar, and Anton G. Nalimov
Appl. Opt. 54(14) 4388-4394 (2015)

Thin high numerical aperture metalens

V. V. Kotlyar, A. G. Nalimov, S. S. Stafeev, Changyu Hu, L. O’Faolain, M. V. Kotlyar, D. Gibson, and S. Song
Opt. Express 25(7) 8158-8167 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  3. V. V. Kotlyar and O. K. Zalyalov, “Design of diffractive optical elements modulating polarization,” Optik (Stuttg.) 103, 125–130 (1996).
  4. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
    [Crossref] [PubMed]
  5. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  6. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
    [Crossref] [PubMed]
  7. G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009).
    [Crossref] [PubMed]
  8. Z. Ghadyani, I. Vartiainen, I. Harder, W. Iff, A. Berger, N. Lindlein, and M. Kuittinen, “Concentric ring metal grating for generating radially polarized light,” Appl. Opt. 50(16), 2451–2457 (2011).
    [Crossref] [PubMed]
  9. Z. Xie, J. He, X. Wang, S. Feng, and Y. Zhang, “Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers,” Opt. Lett. 40(3), 359–362 (2015).
    [Crossref] [PubMed]
  10. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref] [PubMed]
  11. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref] [PubMed]
  12. U. Levy, C.-H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
    [Crossref] [PubMed]
  13. S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
    [Crossref] [PubMed]
  14. V. V. Kotlyar, S. S. Stafeev, M. V. Kotlyar, A. G. Nalimov, and L. O. Faolain, “Subwavelength micropolarizer in a gold film for visible light,” Appl. Opt. 55(19), 5025–5032 (2016).
    [Crossref] [PubMed]
  15. S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “Four-sector transmission azimuthal micropolarizer with a phase shift,” Comput. Opt. 40(1), 12–18 (2016).
    [Crossref]
  16. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
    [Crossref]
  17. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
    [Crossref] [PubMed]
  18. G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
    [Crossref] [PubMed]
  19. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [Crossref] [PubMed]
  20. G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
    [Crossref] [PubMed]
  21. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
    [Crossref]
  22. G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
    [Crossref] [PubMed]
  23. N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004).
    [Crossref] [PubMed]
  24. X. Li, Y. Cao, N. Tian, L. Fu, and M. Gu, “Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate,” Optica 2(6), 567–570 (2015).
    [Crossref]
  25. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
    [Crossref] [PubMed]
  26. S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
    [Crossref] [PubMed]
  27. C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
    [Crossref]
  28. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [Crossref] [PubMed]
  29. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
    [Crossref] [PubMed]

2016 (5)

V. V. Kotlyar, S. S. Stafeev, M. V. Kotlyar, A. G. Nalimov, and L. O. Faolain, “Subwavelength micropolarizer in a gold film for visible light,” Appl. Opt. 55(19), 5025–5032 (2016).
[Crossref] [PubMed]

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “Four-sector transmission azimuthal micropolarizer with a phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

2015 (6)

X. Li, Y. Cao, N. Tian, L. Fu, and M. Gu, “Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate,” Optica 2(6), 567–570 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

Z. Xie, J. He, X. Wang, S. Feng, and Y. Zhang, “Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers,” Opt. Lett. 40(3), 359–362 (2015).
[Crossref] [PubMed]

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
[Crossref] [PubMed]

2013 (4)

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

2012 (2)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2004 (2)

2002 (1)

2001 (1)

1996 (1)

V. V. Kotlyar and O. K. Zalyalov, “Design of diffractive optical elements modulating polarization,” Optik (Stuttg.) 103, 125–130 (1996).

Adamo, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Anbarasan, P. M.

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Berger, A.

Biener, G.

Bokor, N.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bomzon, Z.

Cao, Y.

Capasso, F.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Chen, G.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

Chen, L.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Dai, L.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

Davidson, N.

Debnath, K.

Dennis, M. R.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Fainman, Y.

Faolain, L. O.

Feng, S.

Fu, L.

Gao, P.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Gardes, F. Y.

Genevet, P.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Ghadyani, Z.

Gu, M.

Hao, X.

Harder, I.

Hasman, E.

He, J.

Hong, M.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Iff, W.

Jiang, S.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Jiao, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kleiner, V.

Kotlyar, M. V.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “Four-sector transmission azimuthal micropolarizer with a phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

V. V. Kotlyar, S. S. Stafeev, M. V. Kotlyar, A. G. Nalimov, and L. O. Faolain, “Subwavelength micropolarizer in a gold film for visible light,” Appl. Opt. 55(19), 5025–5032 (2016).
[Crossref] [PubMed]

Kotlyar, V. V.

Kovalev, A. A.

Krauss, T. F.

Kuang, C.

Kuittinen, M.

Lerman, G. M.

Levy, U.

Li, C.

Li, X.

Li, Y.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Lin, F.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Lindberg, J.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Lindlein, N.

Liu, X.

Liu, Y.

Luo, X.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Musthafa, A. M.

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Nalimov, A. G.

O’Faolain, L.

Pang, L.

Prabakaran, K.

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Pu, M.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Qin, F.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Qiu, C.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Rajesh, K. B.

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Reed, G. T.

Rogers, E. T. F.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Roy, T.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Savo, S.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shen, Z.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Stafeev, S. S.

Steffan, A. G.

Sundaram, C. M.

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Tang, D.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Tian, N.

Tsai, C.-H.

Vartiainen, I.

Wang, C.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Wang, S.

Wang, T.

Wang, X.

Wang, Y.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Wen, Z.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

Wu, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Xie, Z.

Yu, A.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yuan, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Zalyalov, O. K.

V. V. Kotlyar and O. K. Zalyalov, “Design of diffractive optical elements modulating polarization,” Optik (Stuttg.) 103, 125–130 (1996).

Zhang, K.

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24(10), 11002–11008 (2016).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Zhao, Z.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Zheludev, N. I.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Zhou, J.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

Chin. Phys. Lett. (1)

C. M. Sundaram, K. Prabakaran, P. M. Anbarasan, K. B. Rajesh, and A. M. Musthafa, “Creation of super long transversely polarized optical needle using azimuthally polarized multi gaussian beam,” Chin. Phys. Lett. 33(6), 064203 (2016).
[Crossref]

Comput. Opt. (1)

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “Four-sector transmission azimuthal micropolarizer with a phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

Laser Photonics Rev. (1)

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Nano Lett. (1)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (8)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
[Crossref] [PubMed]

S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
[Crossref] [PubMed]

N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004).
[Crossref] [PubMed]

U. Levy, C.-H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
[Crossref] [PubMed]

Z. Xie, J. He, X. Wang, S. Feng, and Y. Zhang, “Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers,” Opt. Lett. 40(3), 359–362 (2015).
[Crossref] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
[Crossref] [PubMed]

Optica (1)

Optik (Stuttg.) (1)

V. V. Kotlyar and O. K. Zalyalov, “Design of diffractive optical elements modulating polarization,” Optik (Stuttg.) 103, 125–130 (1996).

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

Sci. Rep. (3)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, and F. Lin, “Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation,” Sci. Rep. 6, 29068 (2016).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Atomic-force-microscope (a) and scanning electron microscope (b) images of the central part of the transmission 4-SPC. The scale shows the microrelief depth in nm.
Fig. 2
Fig. 2 Intensity pattern (negative) and polarization vectors for a beam transmitted through the micropolarizer, generated 5.1-µm (a) and 300- µm (b) away from its surface. The image size is 10 × 10 µm.
Fig. 3
Fig. 3 Intensity distribution (negative) for a beam E in having passed through a micropolarizer, measured 5.1-µm away from the micropolarizer surface. The analyzer P out is rotated by 0° (a), −45° (b), 45° (c), and 90° (d) with respect to the polarization vector E in .
Fig. 4
Fig. 4 Intensity distribution (negative) for a beam E in having passed through a micropolarizer, measured 300-µm away from the micropolarizer surface. The analyzer P out is rotated by 0° (a), −45° (b), 45° (c), and 90° (d) with respect to the polarization vector E in .
Fig. 5
Fig. 5 The Fresnel ZP under simulation as seen in a FullWave window.
Fig. 6
Fig. 6 Intensity patterns within the calculation domain in the (a) YZ- and (b) XZ-planes. ZP boundary is marked with the dashed line.
Fig. 7
Fig. 7 Intensity profile along the z-axis. ZP boundary is marked with the black dashed line.
Fig. 8
Fig. 8 Intensity profiles in the focal spot along the (a) y- and (b) x-axes. The total intensity is marked with the solid line and the transverse intensity component is marked with the dashed line.
Fig. 9
Fig. 9 Experimental optical arrangement (a): M1, M2 are mirrors, O1 is a 100 × objective, C is a probe, S is a spectrometer, and CCD is a video-camera. SEM image of ZP [13] (b).
Fig. 10
Fig. 10 An optical microscope 20x image of (a) a ZP on the 4-SPC background and (b) a 4-SPC on the ZP background. The inset shows magnified and aligned ZP and 4-SPC with their centers lying on the optical axis.
Fig. 11
Fig. 11 Images of the transmitted beam E in obtained at different polarizer positions P out : 0 (a), −45° (b), 45° (c), and 90° (d). For comparison, the insets show calculated intensity distributions from Fig. 4. It is also seen in the figure that the ZP is shifted from the optical axis (the ZP center is marked by the cross).
Fig. 12
Fig. 12 Intensity profile of the focal spot measured using a NSOM Ntegra Spectra: 2D intensity distribution (a) and intensity profiles along the y- (b) and x-axis (c).
Fig. 13
Fig. 13 Intensity pattern in the central part of the calculated domain in the (a) YZ- and (b) XZ-planes. The dotted line marks the ZP surface boundary.
Fig. 14
Fig. 14 Intensity profile along the z-axis. Black dashed line marks the ZP relief boundary.
Fig. 15
Fig. 15 Intensity profile 40-nm away from the ZP surface along the (a) y- and (b) x-axes. The solid line depicts the total intensity and the dotted line is for the transverse component of the intensity.
Fig. 16
Fig. 16 Intensity profile 200-nm away from the ZP along the (a) y- and (b) x-axes. Solid line depicts the total intensity and the dotted line is for the transverse intensity component.

Metrics