Abstract

Compressive light field display with multilayer and multiframe decompositions is able to provide three-dimensional (3D) scenes with high spatial-angular resolution and without periodically repeating view-zones. However, there are still some limitations on the display performance, such as poor image quality and limited field of view (FOV). Compressive light field display with the viewing-position-dependent weight distribution is presented. When relevant views are given high weights in the optimization, the displaying performance at the viewing-position can be noticeably improved. Simulation and experimental results demonstrate the effectiveness of the proposed method. Peak signal-noise-ration (PSNR) is improved by 7dB for the compressive light field display with narrow FOV. The angle for wide FOV can be expended to 70° × 60°, and multi-viewers are supported.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
360 deg full-parallax light-field display using panoramic camera

Chen Su, Xinxin Zhou, Haifeng Li, Qing Yang, Zhechao Wang, and Xu Liu
Appl. Opt. 55(17) 4729-4735 (2016)

A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction

Le Yang, Xinzhu Sang, Xunbo Yu, Boyang Liu, Binbin Yan, Kuiru Wang, and Chongxiu Yu
Opt. Express 26(26) 34412-34427 (2018)

Computational multi-projection display

Seokil Moon, Soon-Gi Park, Chang-Kun Lee, Jaebum Cho, Seungjae Lee, and Byoungho Lee
Opt. Express 24(8) 9025-9037 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. E. Ives, “Parallax stereogram and process of making same,” U. S. patent 725,567 (1903).
  2. G. Lippmann, “Epreuves reversibles donnant la Sensation du Relief,” J. Phys. 7(1), 821–825 (1908).
  3. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  4. X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
    [Crossref]
  5. X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
    [Crossref] [PubMed]
  6. X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
    [Crossref] [PubMed]
  7. P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
    [Crossref]
  8. S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24(11), 11483–11494 (2016).
    [Crossref] [PubMed]
  9. F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
    [Crossref]
  10. G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
    [Crossref] [PubMed]
  11. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
    [Crossref]
  12. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
    [Crossref]
  13. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
    [Crossref]
  14. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
    [Crossref]
  15. F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
    [Crossref]
  16. A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).
  17. F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

2016 (1)

2015 (3)

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
[Crossref]

2014 (4)

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

2013 (1)

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

2012 (2)

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

2011 (2)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

2010 (1)

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

2009 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la Sensation du Relief,” J. Phys. 7(1), 821–825 (1908).

Cai, Y.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Cao, X.

Chen, D.

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Chen, R.

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

Chen, Z.

Dou, W.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Duan, W.

Fuchs, H.

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

Gao, X.

Heide, F.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

Heidrich, W.

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

Hong, K.

Huang, F.

F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
[Crossref]

Kautz, J.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

Lanman, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

Lee, B.

Li, C.

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24(11), 11483–11494 (2016).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la Sensation du Relief,” J. Phys. 7(1), 821–825 (1908).

Luebke, D.

F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

Maimone, A.

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

Park, J. H.

Pulli, K.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

Raskar, R.

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

Reddy, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

Sang, X.

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24(11), 11483–11494 (2016).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

Sun, L.

Wang, K.

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Wang, P.

Wetzstein, G.

F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
[Crossref]

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

Xiao, L.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Xie, S.

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24(11), 11483–11494 (2016).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Xing, S.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Xu, D.

Yan, B.

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Yu, C.

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Yu, X.

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

Yuan, J.

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, B. Yan, J. Yuan, K. Wang, C. Yu, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

Zhao, T.

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

ACM Trans. Graph. (5)

F. Heide, G. Wetzstein, R. Raskar, and W. Heidrich, “Adaptive image synthesis for compressive displays,” ACM Trans. Graph. 32(4), 876–884 (2013).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 81–95 (2010).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 76–79 (2011).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 13–15 (2012).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 30(4), 70–79 (2014).

ACM Trans. Graphic (1)

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graphic 30(6), 61–64 (2011).
[Crossref]

ACM Trans. Graphics (1)

F. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope - Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues,” ACM Trans. Graphics 34(4), 1 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Comput. Graph. Appl. (1)

G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich, and R. Raskar, “Compressive light field displays,” IEEE Comput. Graph. Appl. 32(5), 6–11 (2012).
[Crossref] [PubMed]

J. Phys. (1)

G. Lippmann, “Epreuves reversibles donnant la Sensation du Relief,” J. Phys. 7(1), 821–825 (1908).

J. Soc. Inf. Disp. (1)

A. Maimone, R. Chen, H. Fuchs, R. Raskar, and G. Wetzstein, “Wide field of view compressive light field display using a multilayer architecture and tracked viewers,” J. Soc. Inf. Disp. 45(1), 525–534 (2014).

Opt. Commun. (2)

X. Yu, X. Sang, S. Xing, T. Zhao, D. Chen, Y. Cai, B. Yan, K. Wang, J. Yuan, C. Yu, and W. Dou, “Natural three-dimensional display with smooth motion parallax using active partially pixelated masks,” Opt. Commun. 313(4), 146–151 (2014).
[Crossref]

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, X. Yu, C. Yu, B. Yan, W. Dou, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Opt. Express (3)

Other (1)

F. E. Ives, “Parallax stereogram and process of making same,” U. S. patent 725,567 (1903).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (3058 KB)      Experiment results of compressive light field display for switching, narrow FOV and wide FOV.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The schematic diagram of (a) the basic compressive light field and (b) the weight compressive light field.
Fig. 2
Fig. 2 The schematic diagram of three expressions of weight distribution functions. (a) The Even weight function for basic compressive light filed display. (b) The Binary weight function for the basic compressive light filed display in tracking. (c) The Gaussian weight function for weighted compressive light filed display.
Fig. 3
Fig. 3 Comparison of convergence rates of the two methods. The straight line is the weighted compressive display and the dash line is the basic compressive display. The experiment detail is shown in Fig. 9(a).
Fig. 4
Fig. 4 The schematic diagram of (a) the target light field optimized and (b) the emitted light field reproduced.
Fig. 5
Fig. 5 PSNR of results of compressive light field display under different parameter values. The experiment data is the same as Fig. 9(a).
Fig. 6
Fig. 6 Simulations of switching views with (a) Binary weight function and (b) Gaussian weight function. The weight function covers five viewpoints in computation to create narrow view cone, which are ( s , t ) , ( s + 1 , t ) , ( s 1 , t ) , ( s , t + 1 ) , and ( s , t 1 ) . Views are synthesized when moving in X direction. EPI is also generated. The experiment data is the same as Fig. 9(b). (see Visualization 1)
Fig. 7
Fig. 7 The Prototype display of the weighted compressive light field.
Fig. 8
Fig. 8 The scene of “monkey” with 210 × 170 views and 70° × 60° FOV.
Fig. 9
Fig. 9 Experiment results of compressive light field display with narrow FOV. (a) The scene of “car” with 10 ° × 10 ° FOV. (b) The scene of “monkey” with 20 ° × 20 ° FOV. (see Visualization 1).
Fig. 10
Fig. 10 Experiment results of compressive light field display with wide FOV. The scene of “monkey” with 70 ° × 60 ° FOV.
Fig. 11
Fig. 11 Simulations and photographs shot at different angles of compressive light field display with wide FOV. (see Visualization 1).
Fig. 12
Fig. 12 Distributions of weight and PSNR of compressive light field display for four viewers.
Fig. 13
Fig. 13 Comparison of PSNR of viewer #1 in different viewer sequences. Viewer sequence is the order of adding viewer when displaying. For example, #1 #2 #3 #4 means that, when the viewer number is 1, viewer is #1; when the number is 2, viewers are #1 and #2; when the number is 3, viewers are #1, #2 and #3; when the number is 4, viewers are #1, #2, #3 and #4.
Fig. 14
Fig. 14 Experiment results of compressive light field display for four viewers.

Tables (1)

Tables Icon

Table 1 Configuration parameters of compressive light field display

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

min ( i β l i ˜ l i 2 ) , ( i N u m X × N u m Y ) l i = 1 M m = 1 M f m i ( 1 ) f m i ( 2 ) f m i ( N )
min ( i w i β l i ˜ w i l i 2 ) , ( i N u m X × N u m Y , 0 w i 1 )
f m ( n ) = f m ( n ) i N u m X × N u m Y ( w i ( β l i K i ) ) i N u m X × N u m Y ( w i ( J i K i ) )
J i = 1 M ( m = 1 M f m i ( 1 ) f m i ( 2 ) f m i ( n ) f m i ( N ) )
K i = 1 M ( m = 1 M f m i ( 1 ) f m i ( 2 ) f m i ( n 1 ) f m i ( n + 1 ) f m i ( N ) )
w ( x 0 , y 0 ; x , y ) = w x ( x 0 ; x ) × w y ( y 0 ; y ) + c = w x g ( x 0 , σ x ; x ) × w y g ( y 0 , σ y ; y ) + c = exp ( ( x x 0 ) 2 2 σ x 2 ) × exp ( ( y y 0 ) 2 2 σ y 2 ) + c
w ( i ) ( i N u m X × N u m Y ) = { w s , t p s , t ( z ) < W × H 0 p s , t ( z ) > W × H
w ( x , y ) = w 1 ( x 1 , y 1 ; x , y ) + w 2 ( x 2 , y 2 ; x , y ) + w 3 ( x 3 , y 3 ; x , y ) + + w n ( x n , y n ; x , y ) + c

Metrics