Abstract

We experimentally and theoretically demonstrate electromagnetically induced transparency (EIT)-like and Fano resonance in a single quasi-cylindrical microresonator (QCMR). Stable controlling of the EIT and Fano resonance lineshapes can be achieved by vertically moving the resonator along its axis while in touch with the tapered fiber. Moreover, by horizontally scanning the coupling point along the tapered fiber, asymmetric Fano resonances of the transmission spectra are observed and can be engineered to vary periodically. Interestingly, the two different kinds of mechanisms that induce the Fano or EIT resonances can work on the same mode simultaneously. Our device offers a stable platform for controlling the EIT and Fano resonances and holds unique potential in all-optical switching, quantum information processing and sensitivity-enhanced sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High spectral purity electromagnetically induced transparency-based microwave optoelectronic oscillator with a quasi-cylindrical microcavity

Xueying Jin, Mengyu Wang, Keyi Wang, Yongchao Dong, and Liandong Yu
Opt. Express 27(1) 150-165 (2019)

Tunable Fano-like resonance enabled by coupling a microsphere with a fiber Mach–Zehnder interferometer

Chenyang Zhao, Xuetao Gan, Liang Fang, Lei Han, Kang Chang, Dongying Li, and Jianlin Zhao
Appl. Opt. 55(21) 5756-5760 (2016)

Ultranarrow filter based on Fano resonance in a single cylindrical microresonator for single-longitudinal-mode fiber lasers

Haotian Wang, Rui Xu, Jianing Zhang, Wei Zhou, and Deyuan Shen
Opt. Express 27(16) 22717-22726 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
    [Crossref] [PubMed]
  2. G. Lin, B. Qian, F. Orucević, Y. Candela, J.-B. Jager, Z. Cai, V. Lefèvre-Seguin, and J. Hare, “Excitation mapping of whispering gallery modes in silica microcavities,” Opt. Lett. 35(4), 583–585 (2010).
    [Crossref] [PubMed]
  3. A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
    [Crossref]
  4. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [Crossref]
  5. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref] [PubMed]
  6. B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
    [Crossref]
  7. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
    [Crossref]
  8. F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
    [Crossref]
  9. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
    [Crossref]
  10. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [Crossref]
  11. Y. Wang, K. Zhang, S. Zhou, Y.-H. Wu, M.-B. Chi, and P. Hao, “Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator,” Opt. Lett. 41(8), 1825–1828 (2016).
    [Crossref] [PubMed]
  12. Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
    [Crossref] [PubMed]
  13. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  14. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref] [PubMed]
  15. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [Crossref]
  16. X. Jin, Y. Dong, and K. Wang, “Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling,” Appl. Opt. 54(27), 8100–8107 (2015).
    [Crossref] [PubMed]
  17. X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
    [Crossref]
  18. G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
    [Crossref] [PubMed]
  19. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
    [Crossref]
  20. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20(8), 813–815 (1995).
    [Crossref] [PubMed]
  21. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999).
    [Crossref]
  22. M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
    [Crossref]
  23. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  24. Y. Dong, X. Jin, and K. Wang, “Packaged and robust microcavity device based on a microcylinder–taper coupling system,” Appl. Opt. 54(13), 4016–4022 (2015).
    [Crossref]

2016 (2)

Y. Wang, K. Zhang, S. Zhou, Y.-H. Wu, M.-B. Chi, and P. Hao, “Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator,” Opt. Lett. 41(8), 1825–1828 (2016).
[Crossref] [PubMed]

X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
[Crossref]

2015 (3)

2014 (3)

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

2012 (1)

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

2011 (2)

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

2006 (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
[Crossref]

2005 (1)

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

2003 (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999).
[Crossref]

1995 (1)

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bernard, M.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Cai, Z.

Candela, Y.

Carusotto, I.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Chen, W.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Chen, Y.-L.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Chi, M.-B.

Chiba, A.

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

Chormaic, S. N.

Cui, J.-M.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Dong, C.-H.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Dong, Y.

Dubreuil, N.

Dulashko, Y.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Fujiwara, H.

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

Ghulinyan, M.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Gong, Q.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Gorodetsky, M. L.

Guo, G.-C.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
[Crossref]

Han, Z.-F.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Hanamura, R.

Hao, P.

Hare, J.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Hotta, J.-i.

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

Ilchenko, V. S.

Jager, J.-B.

Jian, H.

X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
[Crossref]

Jiang, X.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Jin, X.

Jung, Y.

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Knight, J. C.

Lefèvre, V.

Lefèvre-Seguin, V.

Lei, F.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

Leventhal, D. K.

Li, B.-B.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Li, Y.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Lin, G.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Liu, Y.-C.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Long, G. L.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

Manzano, F. R.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Matsumoto, T.

Nori, F.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Orucevic, F.

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
[Crossref]

Pavesi, L.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Peng, B.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Petrovich, M. N.

Prtljaga, N.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Pucker, G.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Qian, B.

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
[Crossref]

Sandoghdar, V.

Sasaki, K.

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

Saurabh, S.

Senthil Murugan, G.

Sumetsky, M.

Sun, F.-W.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

Takeuchi, S.

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

Tomita, M.

Totsuka, K.

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Wang, K.

Wang, Y.

Ward, J.

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Wilkinson, J. S.

Wu, Y.-H.

Xiao, Y.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Yang, L.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Yang, Y.

Zervas, M. N.

Zhang, K.

Zhou, S.

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Zou, C.-L.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

A. Chiba, H. Fujiwara, J.-i. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2), 021108 (2012).
[Crossref]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105(10), 101112 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Jin, Y. Dong, K. Wang, and H. Jian, “Selective Excitation and Probing of Axial Modes in a Microcylindrical Resonator for Robust Filter,” IEEE Photonics Technol. Lett. 28(15), 1649–1652 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

J. Phys. D (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D 39(24), 5133–5136 (2006).
[Crossref]

Nat. Commun. (1)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Nature (3)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Mode spectra of a single QCMR with R0 = 62.588 μm and ∆k = 2.65 × 10−4 μm−1. The black and red colors indicate n = 1 and n = 2 radial modes, respectively.
Fig. 2
Fig. 2 (a) Schematic illustration of experimental setup consisting of a fiber coupled two WGMs system. (b) Experimental photograph of the QCMR-fiber coupling system. (c) The simulated light field distribution for n = 1 and n = 2 WGMs in COMSOL Multiphysics.
Fig. 3
Fig. 3 Experimental normalized transmission spectra (black curve) and theoretical fittings (red curve) at different z positions. From top to bottom, the tapered fiber was located at 60 μm, 75 μm, 77 μm, 78 μm, 85 μm, and 87 μm away from the equator. Fitting parameters are [γ1, γ2] = [1.2, 192.4] MHz, θ = 0.10, φ = 0.15, and [Δω21, κ1, κ2] = [−125.7, 91.2, 376.8], [Δω21, κ1, κ2] = [−70.4, 77.8, 399.3], [Δω21, κ1, κ2] = [0, 48.9, 492.8], [Δω21, κ1, κ2] = [189.75, 22.5, 8583.1], [Δω21, κ1, κ2] = [394.58, 13.2, 8833.5] MHz for [(b)−(f)], respectively. The inset on the right illustrates the tuning process in the experiment.
Fig. 4
Fig. 4 (a) Transmission spectra of a multimode tapered-fiber in touch with a QCMR at coupling points ∆x = 0, 3 μm, 8 μm, 18 μm, 23 μm, and 33 μm. Transmission minima of (b) mode A and (c) mode B versus the distance change ∆x.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ nmq =2π n 0 [ ( U nm R 0 ) 2 +( q+ 1 2 ) 2 U nm Δk R 0 ] 1/2 ,
d a 1 dt =iΔ ω 1 a 1 γ 1 + κ 1 2 a 1 g a 2 κ 1 a in cosθ, d a 2 dt =iΔ ω 2 a 2 γ 2 + κ 2 2 a 2 g a 1 κ 2 a in cos( φθ ),
T= | a out a in | 2 = | a in cosθ+ κ 1 a 1 + κ 2 a 2 cosφ | 2 + | a in sinθ+ κ 2 a 2 sinφ | 2 | a in | 2 .
E c1(2) = i α c1(2) ν c1(2) ( ω ω c1(2) )+i( 1 α c1(2) t c1(2) ) ν c1(2) j p 1(2)j E 0 ,
E t = j ( t j E 0 + q 1j E c1 q 2j E c2 ) ,
T= | E t E 0 | 2 = | t ¯ | 2 ( ω ω c ) 2 + C 1 + C 2 ( ω ω c ) ( ω ω c ) 2 + ( 1 α c t c ) 2 ν c 2 ,
C 1 = | ( 1 α c t c ) t ¯ + α c ( p ¯ 1 q ¯ 1 p ¯ 2 q ¯ 2 ) | 2 ν c 2 , C 2 =2 α c Im[ t ¯ ( p ¯ 1 q ¯ 1 p ¯ 2 q ¯ 2 ) * ] ν c .

Metrics