Abstract

We show that a dielectric nanowire (NW) with a rectangular cross section can effectively be modeled as a Fabry-Perot cavity formed by truncating a dielectric slab waveguide. By calculating the mode indices of the supported waveguide modes and the reflection phase pickup of the guided waves from the end facets, we can numerically predict the spectral locations of optical, Mie-like resonances for such NWs. This type of analysis must be performed twice in order to account for all resonances of these structures, corresponding to light propagating in the vertical or horizontal directions. The model shows excellent agreement with full-field simulations. We show how the refractive index of both the NW itself and neighboring materials and substrates impact the resonant properties. Our results can aid the development of NW-based optoelectronic devices, for which rectangular cross sections are much simpler to fabricate using top-down fabrication procedures.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  3. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  4. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  5. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
    [Crossref] [PubMed]
  6. P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14(2), 429–434 (2014).
    [Crossref] [PubMed]
  7. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [Crossref]
  8. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
    [Crossref] [PubMed]
  9. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
    [Crossref] [PubMed]
  10. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  11. A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
    [Crossref] [PubMed]
  12. S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
    [Crossref] [PubMed]
  13. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  14. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  15. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  16. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  17. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  18. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  19. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  20. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
    [Crossref] [PubMed]
  21. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  22. P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
    [Crossref] [PubMed]
  23. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
    [Crossref] [PubMed]
  24. X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
    [Crossref]
  25. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
    [Crossref]
  26. R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10(6), 391–398 (1939).
    [Crossref]
  27. R. Gans and H. Happel, “Zur Optik kolloidaler Metallösungen,” Ann. Phys. 29, 277–300 (1908).
  28. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. III Radio Commun. Eng. 94, 65–68 (1947).
  29. J. van Bladel, “Resonant scattering by dielectric cylinders,” IEEE J. Microw. Opt. Acoust. 1(2), 41 (1977).
    [Crossref]
  30. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  31. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [Crossref] [PubMed]
  32. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  33. H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
    [Crossref] [PubMed]
  34. H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
    [Crossref]
  35. K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express 21(8), 10228–10233 (2013).
    [Crossref] [PubMed]
  36. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  37. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
    [Crossref] [PubMed]
  38. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48(7), 2071–2102 (1969).
    [Crossref]
  39. P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
    [Crossref]
  40. J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
    [Crossref]
  41. R. K. Mongia, “Theoretical and experimental resonant frequencies of rectangular dielectric resonators,” IEEE Proc. H Microwaves, Antennas Propag. 139, 98 (1992).
    [Crossref]
  42. K. S. Chiang, “Dual effective-index method for the analysis of rectangular dielectric waveguides,” Appl. Opt. 25(13), 2169 (1986).
    [Crossref] [PubMed]
  43. A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proc. IRE50, 2081–2092 (1962).
  44. V. G. Bordo, “Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire,” Phys. Rev. B 81(3), 035420 (2010).
    [Crossref]
  45. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
    [Crossref] [PubMed]
  46. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
    [Crossref] [PubMed]
  47. G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
    [Crossref] [PubMed]
  48. T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
    [Crossref]
  49. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
    [Crossref] [PubMed]
  50. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
    [Crossref] [PubMed]
  51. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [Crossref] [PubMed]
  52. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  53. S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).
  54. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [Crossref] [PubMed]
  55. C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
    [Crossref]
  56. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
    [Crossref]
  57. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
    [Crossref]
  58. J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880 (2012).
    [Crossref]
  59. L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
    [Crossref] [PubMed]
  60. J. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48(7), 2133–2160 (1969).
    [Crossref]
  61. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
    [Crossref]
  62. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  63. P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
    [Crossref]
  64. D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
    [Crossref]
  65. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).

2015 (2)

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

2014 (11)

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14(2), 429–434 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (9)

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880 (2012).
[Crossref]

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

2011 (5)

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

2010 (4)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

V. G. Bordo, “Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire,” Phys. Rev. B 81(3), 035420 (2010).
[Crossref]

2009 (5)

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

2008 (5)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[Crossref] [PubMed]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

2007 (2)

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2005 (2)

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

1986 (1)

1981 (2)

P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
[Crossref]

P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
[Crossref]

1980 (1)

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

1977 (1)

J. van Bladel, “Resonant scattering by dielectric cylinders,” IEEE J. Microw. Opt. Acoust. 1(2), 41 (1977).
[Crossref]

1970 (1)

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

1969 (2)

J. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48(7), 2133–2160 (1969).
[Crossref]

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48(7), 2071–2102 (1969).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. III Radio Commun. Eng. 94, 65–68 (1947).

1939 (1)

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10(6), 391–398 (1939).
[Crossref]

1908 (2)

R. Gans and H. Happel, “Zur Optik kolloidaler Metallösungen,” Ann. Phys. 29, 277–300 (1908).

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

Agarwal, R.

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Ahmed, A.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Audet, R. M.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Balram, K. C.

Barash, L. F.

A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proc. IRE50, 2081–2092 (1962).

Barnard, E. S.

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Beermann, J.

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

Belov, P. A.

Bhaskaran, M.

Bin Hasan, S.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

Boltasseva, A.

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

Bordo, V. G.

V. G. Bordo, “Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire,” Phys. Rev. B 81(3), 035420 (2010).
[Crossref]

Bozhevolnyi, S.

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[Crossref] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[Crossref] [PubMed]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
[Crossref]

H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14(2), 429–434 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
[Crossref] [PubMed]

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Cao, L.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Chalabi, H.

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
[Crossref]

H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
[Crossref] [PubMed]

Chandran, A.

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

Chiang, K. S.

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Citerne, J.

P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
[Crossref]

P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
[Crossref]

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

Claudon, J.

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Coenen, T.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

Collin, S.

Colombo, C.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Cui, Y.

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Della Valle, G.

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[Crossref] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Ee, H.-S.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Filter, R.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

Fontcuberta I Morral, A.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Friedler, I.

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Fumeaux, C.

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Gans, R.

R. Gans and H. Happel, “Zur Optik kolloidaler Metallösungen,” Ann. Phys. 29, 277–300 (1908).

Garcia, G.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Gelin, P.

P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
[Crossref]

P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Gérard, J. M.

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Goell, J.

J. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48(7), 2133–2160 (1969).
[Crossref]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Gordon, R.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Happel, H.

R. Gans and H. Happel, “Zur Optik kolloidaler Metallösungen,” Ann. Phys. 29, 277–300 (1908).

Hasman, E.

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
[Crossref]

H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Huang, K. C. Y.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Hugonin, J. P.

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Hwang, H. Y.

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Jouanin, A.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, J.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Kang, J.-H.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Kennis, P.

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Kim, S. J.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

Krasnok, A. E.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Krogstrup, P.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lalanne, P.

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880 (2012).
[Crossref]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Landreman, P. E.

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14(2), 429–434 (2014).
[Crossref] [PubMed]

Lederer, F.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Legier, J.

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. III Radio Commun. Eng. 94, 65–68 (1947).

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Liu, W.

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48(7), 2071–2102 (1969).
[Crossref]

Marcuse, D.

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

Miller, D. A. B.

Milliron, D. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Mitchell, A.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Nygård, J.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Okaya, A.

A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proc. IRE50, 2081–2092 (1962).

Park, J.

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Pelouard, J.-L.

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Petenzi, M.

P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
[Crossref]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Ren, M. L.

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Richtmyer, R. D.

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10(6), 391–398 (1939).
[Crossref]

Rockstuhl, C.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Sauvan, C.

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880 (2012).
[Crossref]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Schuller, J. A.

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[Crossref] [PubMed]

Seo, M.-K.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

Shah, C. M.

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Sondergaard, T.

Søndergaard, T.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Sriram, S.

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Sun, L.

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Thomann, I.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Toutain, S.

P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
[Crossref]

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

van Bladel, J.

J. van Bladel, “Resonant scattering by dielectric cylinders,” IEEE J. Microw. Opt. Acoust. 1(2), 41 (1977).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Vasudev, A. P.

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
[Crossref] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Vesseur, E. J. R.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

Vogelgesang, R.

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

White, J. S.

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Withayachumnankul, W.

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Yang, J.

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Yuan, H.

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zou, L.

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Ann. Phys. (2)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

R. Gans and H. Happel, “Zur Optik kolloidaler Metallösungen,” Ann. Phys. 29, 277–300 (1908).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Liu, J. Park, J.-H. Kang, H. Yuan, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Bell Syst. Tech. J. (3)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48(7), 2071–2102 (1969).
[Crossref]

J. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48(7), 2133–2160 (1969).
[Crossref]

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

IEEE J. Microw. Opt. Acoust. (1)

J. van Bladel, “Resonant scattering by dielectric cylinders,” IEEE J. Microw. Opt. Acoust. 1(2), 41 (1977).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 29(2), 107–114 (1981).
[Crossref]

J. Legier, P. Kennis, S. Toutain, and J. Citerne, “Resonant frequencies of rectangular dielectric resonators,” IEEE Trans. Microw. Theory Tech. 28(9), 1031–1034 (1980).
[Crossref]

J. Appl. Phys. (1)

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10(6), 391–398 (1939).
[Crossref]

J. Inst. Electr. Eng. III Radio Commun. Eng. (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. III Radio Commun. Eng. 94, 65–68 (1947).

Laser Photonics Rev. (1)

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

Matter Mater. Phys. (1)

S. Bin Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, ““Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B - Condens,” Matter Mater. Phys. 84, 1–5 (2011).

Nano Lett. (14)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

L. Sun, M. L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11(10), 4265–4269 (2011).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. Fontcuberta I Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14(2), 429–434 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J.-H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Nat. Mater. (4)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Opt. Express (10)

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880 (2012).
[Crossref]

K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express 21(8), 10228–10233 (2013).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[Crossref] [PubMed]

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(S3), A385–A394 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[Crossref] [PubMed]

H. Chalabi, E. Hasman, and M. L. Brongersma, “An ab-initio coupled mode theory for near field radiative thermal transfer,” Opt. Express 22(24), 30032–30046 (2014).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21(1), 1344–1352 (2013).
[Crossref] [PubMed]

Phys. Rev. B (4)

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B 91(1), 014302 (2015).
[Crossref]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[Crossref]

A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85(8), 085416 (2012).
[Crossref]

V. G. Bordo, “Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire,” Phys. Rev. B 81(3), 035420 (2010).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Phys. Rev. Lett. (3)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Radio Sci. (1)

P. Gelin, S. Toutain, and J. Citerne, “Scattering of surface waves on transverse discontinuities in planar dielectric waveguides,” Radio Sci. 16(6), 1161–1165 (1981).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Science (1)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Other (5)

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

R. K. Mongia, “Theoretical and experimental resonant frequencies of rectangular dielectric resonators,” IEEE Proc. H Microwaves, Antennas Propag. 139, 98 (1992).
[Crossref]

A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proc. IRE50, 2081–2092 (1962).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Nanowire geometry and origin of optical resonances. (a) Side view of an infinite rectangular NW as produced by lithographic fabrication techniques such as etching or lift-off. The blue curves represent the z-component of the electric (magnetic) field profile for the fundamental and first-order TM (TE) guided modes. Note that the polarization convention for NW resonators is the opposite of that for slab waveguides. The mode propagates across the NW with propagation constant βl and reflects off the end facets, collecting a reflection phase, φL. A resonance occurs when the oscillating waves pick up round trip phase equal to an integer multiple of 2π. (b) The same NW can be viewed as a vertical FP cavity. The guided modes in this vertical slab have propagation constant βv and accumulate a reflection phase, φB. Note that the presence of a substrate may result in different reflection phases at the top and bottom interfaces.

Fig. 2
Fig. 2

End facet reflection coefficients. (a) A wave comprising a single guided mode in a semi-infinite slab waveguide is set incident from the left towards an abrupt truncation, and is scattered into all possible guided, radiation, and free-space modes (only those modes with the same symmetry with respect to the slab plane are allowed). The complex reflection coefficients of the guided modes are designated as am, where m = 0,1,2… is the mode order. (b) The magnitude and (c) phase of each reflection coefficient is dependent on the thickness of the slab, which is analogous to the height of the NW resonator. The horizontal dashed line in (b) shows the Fresnel reflection magnitude for a plane wave on a planar interface with the same refractive indices. The vertical dashed lines indicate the cutoff heights for the modes with m = 2 and 4. All values were calculated for an incident fundamental TE (H z ) mode of a slab with a material index of 4. Data are omitted near cutoff, where there was no numerical convergence. (d) Width of the guided slab modes as a function of slab height (see text for details). The kink at the minimum value for each curve corresponds to the 1/e point lying on the slab boundary. (e) The spacing between peak maxima from the FDFD data in Fig. 3(a) is converted into a mode index, neff, (black circles) and compared against the mode index for a dielectric slab of equal height (blue curve). For all plots, the horizontal axis indicates the height of the waveguide normalized to the wavelength in the high index material.

Fig. 3
Fig. 3

Fabry-Perot model predictions for thin slab waveguides. a) FDFD simulations: the electromagnetic energy stored within a rectangular NW (n = 4) resulting from TE (H z ) plane wave excitation at 45 degrees displays resonant behavior as a function of NW width and height. Colored, vertical lines show the resonant widths as predicted by the FPCM. Resonances converge to widths at half-integer multiples of the excitation wavelength as slab height increases. b) Normalized FDFD field plots of the resonances indicated in part (a). Each simulated structure has a normalized height of 0.8, and normalized widths as predicted by the FPCM (0.6, 1.2, 1.84, and 2.46 from top to bottom). White boxes show the boundary of the NW. Lobes of field intensity indicate a standing wave of the fundamental TE slab guided mode. As the mode order increases, one additional antinode of field intensity is present.

Fig. 4
Fig. 4

Resonance map for higher-order modes. Extension of the line plots in Fig. 3(a) to larger range of NW heights. The greyscale color map in parts (a) and (b) represents the Qstor calculated from FDFD simulations; both plots are identical. The scale has been saturated to improve visibility. Colored markers indicate FPCM predictions of resonant dimensions. The color denotes the number of longitudinal antinodes, m, in the Fabry-Perot standing wave (red = 1, blue = 2, green = 3, yellow = 4, violet = 5), and the symbol shape denotes the order of the slab mode being reflected in the cavity (circles = fundamental, triangles = 2nd, squares = 3rd). The transparency of the symbols is set by the magnitude of the reflection coefficient at the end facets. In (a), only one cavity with mirrors on the left and right of the slab is considered; multiple features in the color map are not described by the FPCM. In (b), however, a second vertical cavity is introduced by exchanging the width and height of the slab used in the model. The new predicted dimensions are indicated with hollow symbols. All FDFD features are now accounted for. c) Explanation of resonance nomenclature. Each resonance is a combination of both horizontally and vertically propagating guided slab modes. d) Field plot of |H z | for the TE1,2 mode. The location of this resonance is highlighted by the yellow trace in part (a).

Fig. 5
Fig. 5

Effect of material index. Calculation of Qstor from FDFD simulations. For all curves, the resonator has a normalized height of 0.6 and complex refractive index n + ik. (a) As n increases, there is a greater index contrast at the end facets of the structure. Light is more highly confined, and Qstor rises. The shift in resonant width can be attributed both to a change in propagation constant of the respective guided mode, as well as reduced relative contribution of the driving plane wave to the fields inside the NW. (b) Increasing the imaginary part of the refractive index reduces the energy storage with minimal effect to the dimensions at which resonance occurs.

Fig. 6
Fig. 6

Effect of substrate. (a) Calculated Qstor values for resonators above a substrate with nsub = 2. Features associated with the vertical Fabry-Perot cavity are no longer visible due to the reduced optical confinement at the bottom interface. Colored markers show the dimensions predicted with a longitudinal FPCM, using the propagation constant for an asymmetric dielectric slab. The single cavity model now accounts for all visible features in the FDFD results. The phase pickup on reflection was kept the same as for the case with no substrate, resulting in some misalignment between the FDFD and FPCM results. (b) FDFD simulations repeated with a metallic substrate (n = 10i). The colored markers represent the FPCM predictions for a longitudinal Fabry-Perot cavity with twice the height of the FDFD simulation, and no substrate. Excellent qualitative agreement remains because the substrate acts as a ground plane, doubling the effective height of the resonator. Note that no features in the FDFD data are seen for those guided modes without anti-symmetry about the center of the waveguide. The field plot below shows |H z | for the TE1,1 mode, which has shifted such that the center of its field anti-node lies on the symmetry plane. Only markers for the m = 1 modes are shown for clarity. (c) Identical color map as in the previous plot, but here the markers show the FPCM predicted dimensions for a vertical cavity in air, but replacing the phase pickup for the bottom facet with π. This additional phase results in all modes being accessible at thinner resonators. Only markers for the n = 1 modes are shown for clarity. The marker convention for all plots matches that from Fig. 4.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Φ = 2 β l w + ϕ L + ϕ R
E y , m i + n a n E y , n r + 0 q r ( ρ ) E y r ( ρ ) d ρ = 0 q t ( ρ ) E y t ( ρ ) d ρ
H x , m i + n a n H x , n r + 0 q r ( ρ ) H x r ( ρ ) d ρ = 0 q t ( ρ ) H x t ( ρ ) d ρ
q t ( ρ ) = 1 ω μ o P | β | β + β ( ρ ) { 2 β m 0 E z , m i E z t * ( ρ ) d z + n a n ( β m β n ) 0 E y , n i E y t * ( ρ ) d z + 0 0 q r ( ρ ) [ β m β ( ρ ) ] E y r ( ρ ) E y t * ( ρ ) d z d ρ }
a n = 1 2 ω μ o P 0 0 q t ( ρ ) [ β n β ( ρ ) ] E y , n i E y t * d z d ρ
q r = 1 2 ω μ o P | β ( ρ ) | β ( ρ ) 0 0 q t ( ρ ) ( β ( ρ ) β ( ρ ) ) E y r ( ρ ) E y t * ( ρ ) d z d ρ
n e f f = β l λ 2 π
Q s t o r = ω 0 h 0 w Re { 1 4 E D + 1 4 H B } d x d z F σ
Δ w = 2 π 2 β l = λ o 2 n e f f
Φ = 2 β v h + ϕ T + ϕ B

Metrics