Abstract

High quality factor (Q) optical resonators have enabled rapid growth in the field of cavity-enhanced, radiation pressure-induced optomechanics. However, because research has focused on axisymmetric devices, the observed regenerative excited mechanical modes are similar. In the present work, a strategy for fabricating high-Q whispering gallery mode microcavities with varying degrees of asymmetry is developed and demonstrated. Due to the combination of high optical Q and asymmetric device design, two previously unobserved modes, the asymmetric cantilever and asymmetric crown mode, are demonstrated with sub-mW thresholds for onset of oscillations. The experimental results are in good agreement with computational modeling predictions.

© 2016 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101(14), 141905 (2012).
    [Crossref]
  2. Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
    [Crossref]
  3. S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
    [Crossref]
  4. A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
    [Crossref]
  5. H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
    [Crossref] [PubMed]
  6. D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
    [Crossref] [PubMed]
  7. E. A. Sete and H. Eleuch, “Controllable nonlinear effects in an optomechanical resonator containing a quantum well,” Phys. Rev. A 85(4), 043824 (2012).
    [Crossref]
  8. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
    [Crossref] [PubMed]
  9. P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
    [Crossref]
  10. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
    [Crossref]
  11. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [Crossref]
  12. M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
    [Crossref]
  13. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
    [Crossref] [PubMed]
  14. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  15. J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
    [Crossref] [PubMed]
  16. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
    [Crossref] [PubMed]
  17. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  18. Y.-S. Park and H. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
    [Crossref] [PubMed]
  19. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
    [Crossref]
  20. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
    [Crossref]
  21. S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).
  22. J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).
  23. E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
    [Crossref] [PubMed]
  24. G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
    [Crossref]
  25. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
    [Crossref]
  26. M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20(12), 12742–12751 (2012).
    [Crossref] [PubMed]
  27. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
    [Crossref]
  28. H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
    [Crossref] [PubMed]
  29. T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
    [Crossref] [PubMed]
  30. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
  31. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  32. S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
    [Crossref]
  33. X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
    [Crossref]
  34. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  35. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [Crossref] [PubMed]
  36. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  37. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
    [Crossref]
  38. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
    [Crossref]
  39. Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
    [Crossref]
  40. G. Hackenbroich and J. U. Nöckel, “Dynamical tunneling in optical cavities,” EPL 39(4), 371–376 (1997).
    [Crossref]
  41. E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
    [Crossref]

2016 (1)

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

2015 (3)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

2014 (4)

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

2013 (3)

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

2012 (5)

J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101(14), 141905 (2012).
[Crossref]

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

E. A. Sete and H. Eleuch, “Controllable nonlinear effects in an optomechanical resonator containing a quantum well,” Phys. Rev. A 85(4), 043824 (2012).
[Crossref]

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20(12), 12742–12751 (2012).
[Crossref] [PubMed]

2011 (1)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

2010 (3)

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

2009 (2)

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

2008 (4)

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
[Crossref]

2007 (2)

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

Y.-S. Park and H. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
[Crossref] [PubMed]

2006 (4)

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

2005 (2)

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1999 (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

1998 (1)

1997 (2)

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[Crossref]

G. Hackenbroich and J. U. Nöckel, “Dynamical tunneling in optical cavities,” EPL 39(4), 371–376 (1997).
[Crossref]

1996 (1)

Abdelmoneum, M. A.

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

Alaie, S.

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

Altmann, E. G.

E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
[Crossref]

Anetsberger, G.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Arcizet, O.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

Armani, A. M.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

Baboly, M. G.

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

Baker, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Barclay, P. E.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
[Crossref]

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Botter, T.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Bowen, W. P.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20(12), 12742–12751 (2012).
[Crossref] [PubMed]

Brahms, N.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Briant, T.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

Brooks, D. W. C.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Carmon, T.

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

Chandra, A.

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Chen, Y.

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Choi, H. S.

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Clark, J. R.

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

Clerk, A. A.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Cohadon, P. F.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

Davis, J. P.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Dong, C.-H.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Doolin, C.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Ducci, S.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Eleuch, H.

E. A. Sete and H. Eleuch, “Controllable nonlinear effects in an optomechanical resonator containing a quantum well,” Phys. Rev. A 85(4), 043824 (2012).
[Crossref]

Favero, I.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Fiore, V.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Forstner, S.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

Freeman, M. R.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Ghobadi, R.

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Gil-Santos, E.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Girvin, S. M.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Gomez, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Gong, Q.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Gorodetsky, M. L.

Gröblacher, S.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

Hackenbroich, G.

G. Hackenbroich and J. U. Nöckel, “Dynamical tunneling in optical cavities,” EPL 39(4), 371–376 (1997).
[Crossref]

Hadjar, Y.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Hammerer, K.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

Han, Z.-F.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Harlow, J. W.

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

Harris, J. G. E.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Hauer, B. D.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Hease, W.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Heidmann, A.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Hentschel, M.

E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Hossein-Zadeh, M.

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

Hryciw, A. C.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
[Crossref]

Hsu, W. T.

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

Hu, Y.-W.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Ilchenko, V. S.

Jayich, A. M.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Jiang, X.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Kim, P. H.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Kimble, H. J.

Kippenberg, T.

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Knittel, J.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20(12), 12742–12751 (2012).
[Crossref] [PubMed]

Kuzyk, M. C.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Lee, K. H.

Lehnert, K. W.

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

Lemaître, A.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Leo, G.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Leseman, Z. C.

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

Li, G.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Li, J.-J.

J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101(14), 141905 (2012).
[Crossref]

Li, Y.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Liu, Y.-C.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Ma, J.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Ma, Y.

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

Mabuchi, H.

MacDonald, A. J. R.

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

Magno, G. D.

E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

McRae, T. G.

Metcalfe, M.

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

Miao, H.

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

Mitchell, M.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
[Crossref]

Nguyen, C. T. C.

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

Nguyen, D. T.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Nöckel, J. U.

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[Crossref]

G. Hackenbroich and J. U. Nöckel, “Dynamical tunneling in optical cavities,” EPL 39(4), 371–376 (1997).
[Crossref]

Park, Y.-S.

Pinard, M.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Prasad, A. S.

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Purdy, T. P.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Regal, C. A.

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

Rivière, R.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Rokhsari, H.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

Sankey, J. C.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Savchenkov, A. A.

Schliesser, A.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Schreppler, S.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Sete, E. A.

E. A. Sete and H. Eleuch, “Controllable nonlinear effects in an optomechanical resonator containing a quantum well,” Phys. Rev. A 85(4), 043824 (2012).
[Crossref]

Sheridan, E.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

Simon, C.

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Soltani, S.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

Stone, A. D.

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[Crossref]

Streed, E. W.

Swaim, J. D.

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

Szorkovszky, A.

Taylor, M. A.

Teufel, J. D.

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

Thompson, J. D.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Tian, L.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vanner, M. R.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

Vernooy, D. W.

Wang, G.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Wang, H.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Y.-S. Park and H. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
[Crossref] [PubMed]

Wiersig, J.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Xiao, M.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Xiao, Y.-F.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Yang, C.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Yang, Y.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Zamani, M.

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

Zhang, X.

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Zhao, C.

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

Zhao, M.

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Zhu, K.-D.

J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101(14), 141905 (2012).
[Crossref]

Zou, C.-L.

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Zwickl, B. M.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Appl. Phys. Lett. (5)

J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101(14), 141905 (2012).
[Crossref]

P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102(5), 053102 (2013).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Appl. Phys. Rev. (1)

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

EPL (2)

G. Hackenbroich and J. U. Nöckel, “Dynamical tunneling in optical cavities,” EPL 39(4), 371–376 (1997).
[Crossref]

E. G. Altmann, G. D. Magno, and M. Hentschel, “Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics,” EPL 84(1), 10008 (2008).
[Crossref]

Eur. Phys. J. D (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Front. Optoelectron. China (1)

Y.-F. Xiao, C.-L. Zou, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. China 3(2), 109–124 (2010).
[Crossref]

Front. Phys. (1)

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 96–107 (2006).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

JMEMS (2)

S. Alaie, M. Hossein-Zadeh, M. G. Baboly, M. Zamani, and Z. C. Leseman, “Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals,” JMEMS 25, 311–319 (2016).

J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, and C. T. C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” JMEMS 14, 1298–1310 (2005).

Nat. Nanotechnol. (1)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotechnol. 10(9), 810–816 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Nat. Phys. (1)

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, “Observation of micro-macro entanglement of light,” Nat. Phys. 9(9), 541–544 (2013).
[Crossref]

Nature (5)

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488(7412), 476–480 (2012).
[Crossref] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[Crossref] [PubMed]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460(7256), 724–727 (2009).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[Crossref]

New J. Phys. (2)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photonic Sens. (1)

S. Forstner, J. Knittel, E. Sheridan, J. D. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity and performance of cavity optomechanical field sensors,” Photonic Sens. 2(3), 259–270 (2012).
[Crossref]

Phys. Rev. A (2)

E. A. Sete and H. Eleuch, “Controllable nonlinear effects in an optomechanical resonator containing a quantum well,” Phys. Rev. A 85(4), 043824 (2012).
[Crossref]

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006).
[Crossref]

Phys. Rev. Lett. (4)

T. Carmon and K. J. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency,” Phys. Rev. Lett. 98(12), 123901 (2007).
[Crossref] [PubMed]

H. Miao, Y. Ma, C. Zhao, and Y. Chen, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters,” Phys. Rev. Lett. 115(21), 211104 (2015).
[Crossref] [PubMed]

J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101(19), 197203 (2008).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, and M. Xiao, “Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip,” Sci. China Phys. Mech. Astron. 58, 1–4 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics