Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spectrum regulation for mid-infrared ultrafast pulses via a time-synchronization aperiodically poled LiNbO3

Open Access Open Access

Abstract

Restricted to temporal separation during the coupled-waves interaction, aperiodically quasi-phase-matching (QPM) nonlinear crystals are primarily implemented for prechirped pulses, showing limited applications in ultrafast temporal scale. Under the proposed time-synchronization framework, pump and signal waves travel with identical group-velocity, which permits sustaining energy transfer in long aperiodically poled LiNbO3 crystals (APPLN) even with ultrafast pulse duration. With the help of this structure, adiabatic frequency conversion shows extra advantages compared with the common cases, which enables lower stretching ratio and smoother gain spectrum. Focusing on the typical mid-infrared wavelength of ~3 μm, we numerically study the potential performance of APPLN with chirp-free ultrabroad interacting waves. In contrast to the spectral shift and conversion efficiency degradation presented by its traditional Type-0 QPM counterpart, the proposed design demonstrated impressive ability to obtain arbitrary spectrum via a simple femtosecond OPA/OPO. Peculiarly, the QPM chirp rate sign plays a significant role to the output spectrum, and a positive chirp rate is preferential in delivering a bandwidth-controllable spectrum. The proposed design provides a promising technical route to achieve spectrum manipulation in ultrafast temporal scale.

© 2016 Optical Society of America

PDF Article

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.