Abstract

Athermal and flat-topped transmissions are the two main requirements for a silicon WDM filter. A Mach-Zehnder (MZ) filter which simultaneously satisfies these two requirements has been experimentally demonstrated in this paper. A combination of strip waveguide and hybrid strip-slot waveguide is introduced for athermalization, and two-stage interference is utilized for flat-topped transmission. The temperature dependent wavelength shift is measured to be ~-5 pm/K while the best 1 dB bandwidth is 5.5 nm with 14.7 nm free spectral range (FSR). The measured minimum insertion loss is only 0.4 dB with a device dimension of 170 μm × 580 μm. Moreover, Such a MZ filter is compatible with the state-of-art CMOS-fabrication process and its minimum feature size is as large as 200 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing

Folkert Horst, William M.J. Green, Solomon Assefa, Steven M. Shank, Yurii A. Vlasov, and Bert Jan Offrein
Opt. Express 21(10) 11652-11658 (2013)

Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, and Jinsong Xia
Photon. Res. 6(7) 686-691 (2018)

Compact multimode waveguide based temperature-insensitive Mach-Zehnder interferometer

Yingxuan Zhao, Chao Qiu, Aimin Wu, Yang Li, Lue Tao, Zhen Sheng, Wei Li, Xi Wang, and Fuwan Gan
Opt. Express 27(15) 20373-20382 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
    [Crossref]
  2. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photonics Res. 3(5), B28–B46 (2015).
    [Crossref]
  3. S. Song, X. Yi, S. X. Chew, L. Li, L. Nguyen, and P. Bian, “Integrated SOI stagger-tuned optical filter with flat-top response,” J. Lightwave Technol. 34(9), 2318–2323 (2016).
    [Crossref]
  4. H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
    [Crossref]
  5. P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39(21), 6304–6307 (2014).
    [Crossref] [PubMed]
  6. S. H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21(25), 30163–30174 (2013).
    [Crossref] [PubMed]
  7. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
    [Crossref]
  8. D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
    [Crossref]
  9. S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
    [Crossref]
  10. D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
    [Crossref]
  11. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  12. C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
    [Crossref]
  13. S. H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach-Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Lett. 39(13), 3702–3705 (2014).
    [Crossref] [PubMed]
  14. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
    [Crossref]
  15. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  16. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
    [Crossref]
  17. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  18. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
    [Crossref] [PubMed]
  19. Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photonics Res. 2(2), 71–74 (2014).
    [Crossref]
  20. K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. Ben Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40(11), 2641–2644 (2015).
    [Crossref] [PubMed]
  21. S. Dwivedi, H. D’Heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
    [Crossref]
  22. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  23. P. Xing and J. Viegas, “Subwavelength grating waveguide-integrated athermal Mach-Zehnder interferometer with enhanced fabrication error tolerance and wide stable spectral range,” Proc. SPIE 9752, 97520U (2016).
  24. P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
    [Crossref] [PubMed]
  25. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
    [Crossref] [PubMed]
  26. Q. Deng, R. Zhang, L. Liu, X. Li, J. Michel, and Z. Zhou, “Athermal and CMOS-compatible flat-topped silicon Mach-Zehnder filters,” in 13th International Conference on Group IV Photonics (IEEE Photonics Society, Shanghai, China, 2016), p. FC5.
    [Crossref]
  27. Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24(7), 7347–7355 (2016).
    [Crossref] [PubMed]
  28. Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39(19), 5665–5668 (2014).
    [Crossref] [PubMed]
  29. Q. Deng, L. Liu, X. Li, J. Michel, and Z. Zhou, “Linear-regression-based approach for loss extraction from ring resonators,” Opt. Lett. 41(20), 4747–4750 (2016).
    [Crossref]

2016 (4)

2015 (4)

K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. Ben Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40(11), 2641–2644 (2015).
[Crossref] [PubMed]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photonics Res. 3(5), B28–B46 (2015).
[Crossref]

H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
[Crossref]

2014 (5)

2013 (5)

2010 (2)

2009 (2)

2008 (1)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

2007 (1)

D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
[Crossref]

2006 (1)

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

2003 (1)

D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
[Crossref]

2000 (1)

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Assefa, S.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Baets, R.

Barwicz, T.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Ben Bakir, B.

Bian, P.

Bogaerts, W.

Bona, G. L.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Cardenas, J.

Chen, P.

Chen, S.

Chew, S. X.

Cui, J.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photonics Res. 3(5), B28–B46 (2015).
[Crossref]

D’Heer, H.

S. Dwivedi, H. D’Heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Dai, D.

P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39(21), 6304–6307 (2014).
[Crossref] [PubMed]

D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
[Crossref]

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
[Crossref]

de Ridder, R. M.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Deng, H.

H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
[Crossref]

Deng, Q.

Dumon, P.

Dwivedi, S.

S. Dwivedi, H. D’Heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Ellis-Monaghan, J.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Ferrotti, T.

Germann, R.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Gill, D. M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Gondarenko, A.

Green, W.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Green, W. M. J.

Gu, X.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Guan, X.

Guha, B.

Haensch, W.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Han, X.

Harduin, J.

Hassan, K.

He, S.

D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
[Crossref]

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
[Crossref]

Hofrichter, J.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Horikawa, T.

Horst, F.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Jeong, S. H.

Jian, X.

Kamlapurkar, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Khan, S. N.

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

Khater, M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Kiewra, E.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Koshino, K.

Kyotoku, B. B. C.

Li, L.

Li, X.

Lipson, M.

Liu, L.

Q. Deng, L. Liu, X. Li, J. Michel, and Z. Zhou, “Linear-regression-based approach for loss extraction from ring resonators,” Opt. Lett. 41(20), 4747–4750 (2016).
[Crossref]

Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24(7), 7347–7355 (2016).
[Crossref] [PubMed]

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39(19), 5665–5668 (2014).
[Crossref] [PubMed]

D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
[Crossref]

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

Mei, W.

D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
[Crossref]

Menezo, S.

Michel, J.

Moooka, T.

Morito, K.

Morthier, G.

Nguyen, L.

Offrein, B.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Offrein, B. J.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Ohtsuka, M.

Pan, H.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Pathak, S.

Proesel, J.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Reinholm, C.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Rice, P.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Rosenberg, J.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Rylyakov, A.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Salemink, H. W. M.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

Schow, C.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Sciancalepore, C.

Seki, M.

Shank, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Shank, S. M.

Shi, Y.

Shimura, D.

Simoyama, T.

Song, S.

Tanaka, Y.

Teng, J.

Topuria, T.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Uenuma, M.

Van Thourhout, D.

Vanslembrouck, M.

Viegas, J.

P. Xing and J. Viegas, “Subwavelength grating waveguide-integrated athermal Mach-Zehnder interferometer with enhanced fabrication error tolerance and wide stable spectral range,” Proc. SPIE 9752, 97520U (2016).

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

Vlasov, Y.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Vlasov, Y. A.

Wosinski, L.

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

Xing, P.

P. Xing and J. Viegas, “Subwavelength grating waveguide-integrated athermal Mach-Zehnder interferometer with enhanced fabrication error tolerance and wide stable spectral range,” Proc. SPIE 9752, 97520U (2016).

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

Xu, Y.

H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
[Crossref]

Yan, Q.

Yan, Y.

H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
[Crossref]

Yang, M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Yi, H.

Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photonics Res. 2(2), 71–74 (2014).
[Crossref]

Yi, X.

Yin, B.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photonics Res. 3(5), B28–B46 (2015).
[Crossref]

Yokoyama, N.

Zhang, H.

Zhao, M.

Zhou, Z.

IEEE Photonics Technol. Lett. (4)

H. Deng, Y. Yan, and Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet,” IEEE Photonics Technol. Lett. 27(11), 1161–1164 (2015).
[Crossref]

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology,” IEEE Photonics Technol. Lett. 12(9), 1201–1203 (2000).
[Crossref]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

S. Dwivedi, H. D’Heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Opt. Commun. (3)

D. Dai, L. Liu, and S. He, “Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer,” Opt. Commun. 270(2), 195–202 (2007).
[Crossref]

S. N. Khan, D. Dai, L. Liu, L. Wosinski, and S. He, “Optimal design for a flat-top AWG demultiplexer by using a fast calculation method based on a Gaussian beam approximation,” Opt. Commun. 262(2), 175–179 (2006).
[Crossref]

D. Dai, W. Mei, and S. He, “Using a tapered MMI to flatten the passband of an AWG,” Opt. Commun. 219(1-6), 233–239 (2003).
[Crossref]

Opt. Express (8)

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

S. H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21(25), 30163–30174 (2013).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[Crossref] [PubMed]

Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24(7), 7347–7355 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Photonics Res. (2)

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photonics Res. 3(5), B28–B46 (2015).
[Crossref]

Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photonics Res. 2(2), 71–74 (2014).
[Crossref]

Proc. SPIE (1)

P. Xing and J. Viegas, “Subwavelength grating waveguide-integrated athermal Mach-Zehnder interferometer with enhanced fabrication error tolerance and wide stable spectral range,” Proc. SPIE 9752, 97520U (2016).

Other (2)

Q. Deng, R. Zhang, L. Liu, X. Li, J. Michel, and Z. Zhou, “Athermal and CMOS-compatible flat-topped silicon Mach-Zehnder filters,” in 13th International Conference on Group IV Photonics (IEEE Photonics Society, Shanghai, China, 2016), p. FC5.
[Crossref]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEDM)(IEEE, 2012), pp. 33.8.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic and (b) theoretically calculated transmission spectra of the two-stage MZ filter.
Fig. 2
Fig. 2 The flat-top transmission spectra of (a) Ch.1 and (b) Ch.2; (c) the required coupling coefficients; (d) transmission spectra with compromised coupling coefficients as Eq. (4). Solid lines, Ch.1; dashed lines, Ch.2; Gray dots, wavelength boundaries of 1 dB bandwidths.
Fig. 3
Fig. 3 (a) The schematic of the proposed athermal flat-topped MZ filter; (b) TOg of the fundamental TE mode in the two waveguide types; The simulated transverse electric field profile of fundamental TE mode in (c) the strip waveguide with W = 450 nm, (d) the hybrid strip-slot waveguide with W = 600 nm and (e) the waveguide mode converter with Wm = 1.25 μm, Lm = 1.40 μm, L = 5 μm; (f) Micrograph of the fabricated filter. All devices presented in this paper are based on a material platform of silicon-on-insulator (SOI) with SiO2 cladding, and H = 220 nm, Slab = 90 nm, Slot = 200 nm; The slot is located at the center of the waveguide; The simulations are performed with 3D full vector finite element method (FEM) at 1550 nm wavelength while the refractive index of Si and SiO2 are set to 3.48 and 1.45 respectively.
Fig. 4
Fig. 4 The measured transmission spectra of the fabricated athermal flat-topped MZ filter.

Tables (2)

Tables Icon

Table 1 The measured optical field attenuation factors.

Tables Icon

Table 2 The required and the fabricated DC coupling coefficients.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ T r 1 = a 1 6 | κ 1 κ 2 r 3 r 1 r 2 r 3 a e jϕ + κ 1 r 2 κ 3 a 2 e j2ϕ + r 1 κ 2 κ 3 a 3 e j3ϕ | 2 T r 2 = a 1 6 | κ 1 κ 2 κ 3 r 1 r 2 κ 3 a e jϕ κ 1 r 2 r 3 a 2 e j2ϕ r 1 κ 2 r 3 a 3 e j3ϕ | 2 ϕ=ΔO L eff 2π λ ; r i = 1 κ i 2 (i=1, 2, 3)
For Ch.1: κ 1 2 = a 2 Κ 1 2 1(1 a 2 ) Κ 1 2 ; κ 2 2 = Κ 2 2 ; κ 3 2 = a 4 Κ 3 2 1(1 a 4 ) Κ 3 2
For Ch.2: κ 1 2 = a 2 Κ 1 2 1(1 a 2 ) Κ 1 2 ; κ 2 2 = Κ 2 2 ; κ 3 2 = a 4 Κ 3 2 1(1 a 4 ) Κ 3 2
For Ch.1 and Ch.2: κ 1 2 = a 2 Κ 1 2 1(1 a 2 ) Κ 1 2 ; κ 2 2 = Κ 2 2 ; κ 3 2 = Κ 3 2
n eff I T Δ L I = n eff II T Δ L II .
{ FSR= λ 2 ΔO L g ΔO L g = n g I Δ L I | 1 T O g I T O g II |; T O g i = n eff i / T n g i (i=I,II)

Metrics