Abstract

In Total Internal Reflection Fluorescence (TIRF) microscopy, the sample is illuminated with an evanescent field that yields a thin optical section. However, its widefield detection has no rejection mechanism against out-of-focus blur from scattered light that can compromise TIRF images. Here I demonstrate that via structured illumination, out-of-focus blur can be effectively suppressed in TIRF microscopy, yielding strikingly clearer images. The same mechanism can also be applied to oblique illumination schemes that extend the reach of TIRF microscopy beyond the basal surface of the cell. The two imaging modes are used to image a biosensor, clathrin coated vesicles and the actin cytoskeleton in different cell types with improved contrast.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structured illumination microscopy

Manish Saxena, Gangadhar Eluru, and Sai Siva Gorthi
Adv. Opt. Photon. 7(2) 241-275 (2015)

Frontiers in structured illumination microscopy

Florian Ströhl and Clemens F. Kaminski
Optica 3(6) 667-677 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
    [Crossref] [PubMed]
  2. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
    [Crossref] [PubMed]
  3. C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008).
    [Crossref] [PubMed]
  4. A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11, 014006 (2006).
  5. M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
    [Crossref] [PubMed]
  6. S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
    [Crossref] [PubMed]
  7. D. Li and E. Betzig, “Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
    [Crossref] [PubMed]
  8. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
    [Crossref]
  9. M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
    [Crossref] [PubMed]
  10. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12(18), 4246–4254 (2004).
    [Crossref] [PubMed]
  11. S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
    [Crossref] [PubMed]
  12. T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
    [Crossref] [PubMed]
  13. J. Deschamps, M. Mund, and J. Ries, “3D superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
    [Crossref] [PubMed]
  14. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  15. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  16. K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032–2049 (2013).
    [Crossref] [PubMed]
  17. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33(14), 1629–1631 (2008).
    [Crossref] [PubMed]
  18. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [Crossref] [PubMed]
  19. G. E. Cragg and P. T. C. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
    [Crossref] [PubMed]
  20. M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, “Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks,” Opt. Express 21(22), 26162–26173 (2013).
    [Crossref] [PubMed]
  21. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  22. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A 26(2), 413–424 (2009).
    [Crossref] [PubMed]
  23. Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
    [Crossref] [PubMed]
  24. D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
    [Crossref] [PubMed]
  25. F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
    [Crossref] [PubMed]
  26. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
    [Crossref] [PubMed]
  27. A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
    [Crossref] [PubMed]
  28. R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
    [Crossref] [PubMed]

2016 (2)

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

D. Li and E. Betzig, “Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

2014 (4)

M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
[Crossref] [PubMed]

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref] [PubMed]

J. Deschamps, M. Mund, and J. Ries, “3D superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

2009 (3)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A 26(2), 413–424 (2009).
[Crossref] [PubMed]

2008 (6)

R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33(14), 1629–1631 (2008).
[Crossref] [PubMed]

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008).
[Crossref] [PubMed]

2006 (2)

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11, 014006 (2006).

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
[Crossref] [PubMed]

2005 (1)

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[Crossref]

2004 (1)

2000 (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

G. E. Cragg and P. T. C. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
[Crossref] [PubMed]

1997 (1)

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Aguet, F.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

Antonescu, C. N.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

Axelrod, D.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
[Crossref] [PubMed]

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11, 014006 (2006).

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

Balaa, K.

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

Balzarotti, F.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Barroca, T.

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref] [PubMed]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

Beck, M.

Bednarek, S. Y.

C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008).
[Crossref] [PubMed]

Belyaev, Y.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
[Crossref] [PubMed]

Best, G.

Betzig, E.

D. Li and E. Betzig, “Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Brunstein, M.

M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
[Crossref] [PubMed]

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, “Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks,” Opt. Express 21(22), 26162–26173 (2013).
[Crossref] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Chmyrov, A.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Cragg, G. E.

Danuser, G.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Davidson, M. W.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Deschamps, J.

Dupuis, G.

Egner, A.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Ewers, H.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
[Crossref] [PubMed]

Fienup, J. R.

Fiolka, R.

Fort, E.

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref] [PubMed]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

Gao, L.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Goldstein, B.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Grotjohann, T.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Heintzmann, R.

Hérault, K.

M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
[Crossref] [PubMed]

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, “Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks,” Opt. Express 21(22), 26162–26173 (2013).
[Crossref] [PubMed]

Higgins, C. D.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Imamoto, N.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Jakobs, S.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Jaqaman, H.

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Jaqaman, K.

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Juškaitis, R.

Keller-Findeisen, J.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Konopka, C. A.

C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008).
[Crossref] [PubMed]

Lavoie-Cardinal, F.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Leutenegger, M.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Lévêque-Fort, S.

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref] [PubMed]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

Li, D.

D. Li and E. Betzig, “Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Liu, Y.-W.

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Loerke, D.

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Lukiyanchuk, V.

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Mandula, O.

Mattheyses, A. L.

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11, 014006 (2006).

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
[Crossref] [PubMed]

Mayet, C.

Mettlen, M.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Mund, M.

Neil, M. A. A.

Oheim, M.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
[Crossref] [PubMed]

M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, “Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks,” Opt. Express 21(22), 26162–26173 (2013).
[Crossref] [PubMed]

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[Crossref]

Peifer, M.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Poulton, J. S.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Ries, J.

Ruckstuhl, T.

Sahl, S. J.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Sakata-Sogawa, K.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Schapper, F.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[Crossref]

Schmid, S. L.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Schroeter, T.

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shaw, K.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
[Crossref] [PubMed]

Shroff, S. A.

Sivankutty, S.

So, P. T. C.

Stemmer, A.

R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33(14), 1629–1631 (2008).
[Crossref] [PubMed]

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
[Crossref] [PubMed]

Surka, M. C.

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Teremetz, M.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Tokunaga, M.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Tourain, C.

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

Verdes, D.

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Westphal, V.

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Wicker, K.

Williams, D. R.

Wilson, T.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Wu, X.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Yarar, D.

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Biophys. J. (3)

M. Brunstein, M. Teremetz, K. Hérault, C. Tourain, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light,” Biophys. J. 106(5), 1020–1032 (2014).
[Crossref] [PubMed]

M. Brunstein, K. Hérault, and M. Oheim, “Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” Biophys. J. 106(5), 1044–1056 (2014).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Cell (1)

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[Crossref] [PubMed]

Dev. Cell (1)

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, “Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint,” Dev. Cell 26(3), 279–291 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11, 014006 (2006).

J. Cell Biol. (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[Crossref]

Microsc. Res. Tech. (2)

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech. 69(8), 642–647 (2006).
[Crossref] [PubMed]

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008).
[Crossref] [PubMed]

Mol. Biol. Cell (1)

Y.-W. Liu, M. C. Surka, T. Schroeter, V. Lukiyanchuk, and S. L. Schmid, “Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells,” Mol. Biol. Cell 19(12), 5347–5359 (2008).
[Crossref] [PubMed]

Nat. Methods (2)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref] [PubMed]

Plant J. (1)

C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008).
[Crossref] [PubMed]

PLoS Biol. (1)

D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7(3), e57 (2009).
[Crossref] [PubMed]

Science (2)

S. J. Sahl, F. Balzarotti, J. Keller-Findeisen, M. Leutenegger, V. Westphal, A. Egner, F. Lavoie-Cardinal, A. Chmyrov, T. Grotjohann, and S. Jakobs, “Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

D. Li and E. Betzig, “Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352(6285), 527 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of sTIRF and sHILO. (a) Light scattering in TIRF microscopy. n1 and n2: refractive indices of glass and water, respectively (b) oblique illumination below the critical angle. (c) Evanescent interference pattern in sTIRF. (d) Interference pattern in sHILO. (e) optical transfer function (OTF) for widefield detection. (f) Filling of the missing cone of the detection OTF with structured illumination.

Fig. 2
Fig. 2

Experimental setup. (a) Experimental realization of sTIRF and sHILO using a high NA objective. A Rendering of the objective and the two laser beams that are incident on the coverslip is shown. β denotes the opening angle of the two beams projected into the lateral sample plane. (b) Schematic drawing of the microscope setup. HWP: half waveplate. BS: beam splitter.

Fig. 3
Fig. 3

Assembly of spectral information. (a) 3D OTFs of the DC band (black) and the two sidebands (red). (b) 2D projections of the OTFs. (c) Weighting mask for the two sidebands. m is a scalar scaling factor determined around Kc/4. (d) Weighting mask for the DC band (widefield spectrum). (e) reconstructed sample spectrum. Both weighting masks and final spectrum are rotationally symmetric around the optical axis. kr is the radial spatial frequency coordinate and Kc the cut-off frequency of the optical transfer function. (f) Experimentally measured OTF for the summed sideband components within a circle limited by Kc/4. Color encodes the relative strength of the summed OTF. The two white dots indicate the Fourier components of the illumination pattern at Kc/2, which are the centers of the shifted sidebands and their corresponding OTFs.

Fig. 4
Fig. 4

Comparison of TIRF (a), linearly deconvolved TIRF (b) and sTIRF (c) by imaging an MV3 cancer cell labeled with AKT-PH-GFP, a biosensor for PI 3-kinase activity. Insets on the right show magnified views of the boxed region in (a). Arrows in (a) mark bright out-of-focus objects. Scale bar: 5 microns.

Fig. 5
Fig. 5

Comparison of TIRF and sTIRF imaging of the actin cytoskeleton. A RPE cell labeled with GFP-tractin as imaged by TIRF (a) and sTIRF (b) microscopy. An A673 cancer cell labeled with GFP-tractin as imaged by TIRF (c) and sTIRF (d) microscopy. scale bars: (a) 10 microns, (b) 5 microns.

Fig. 6
Fig. 6

Imaging clathrin coated vesicles in a monolayer of cells. IMCD cells labeled with EGFP-CLCa as imaged by TIRF [(a) and (c)] and sTIRF [(b) and (d)] microscopy. (c) and (d) show magnified versions of the boxed region in (a). (e) Normalized histogram of signal to background ratios of detected particles in (a) and (b). Image (b) has been gamma corrected with a gamma factor of 0.8 to better highlight weak features. Scale bars: (a) 10 microns, (c) 5 microns.

Fig. 7
Fig. 7

Comparison of oblique illumination with and without structured illumination by imaging fluorescent beads in Agarose and U2OS cells labeled with tractin-GFP. 200nm fluorescent beads in 2% Agarose as imaged with oblique illumination (a) and sHILO (b) at an incident angle of 62.2 ± 0.1 degrees. Arrows mark beads that are slightly out of focus. An U2OS cell labeled with tractin-GFP, as imaged with oblique illumination (c) and sHILO (d) at an incident angle of 62.4 ± 0.3 degrees. 200nm fluorescent beads in 2% Agarose as imaged with oblique illumination (e) and sHILO (f) at an incident angle of 59.3 ± 0.7 degrees. An U2OS cell labeled with tractin-GFP as imaged with oblique illumination (g) and sHILO (h) under an incident angle of 58.5 ± 0.3 degrees. The images in (a), (b), (e) and (f) have been gamma corrected with a gamma factor of 0.8 to better highlight weak features. Scale bars: 5 microns.

Metrics