Abstract

For the first time, proposed and demonstrated is a simultaneous dual optical band coded access optical sensor (CAOS) camera design suited for extreme contrast multispectral bright target scenarios. Deploying a digital micromirror devices (DMDs)-based time-frequency agile pixels CAOS-mode within a two point detector spatially and spectrally isolating framework, this imager simultaneously and independently detects pixel selective image information for two different broad spectral bands that further undergo independent spectral image data extraction via finer-tuned wavelength filtering using all-optical or CAOS-mode electronic filters. A proof-of-concept visible-near infrared band CAOS imager is successfully demonstrated using a target scene containing LEDs and engaging narrowband optical filters. In addition, using the CAOS-mode, demonstrated is the RF domain simultaneous color content monitoring of a white light LED image pixel. Also proposed is the use of a higher bit count analog-to-digital converter (ADC) with both range and sampling duration parameter control along with a larger data set electronic DSP to extract higher DSP gain and realize additional noise suppression. Using a 16-bit ADC and 2,097,152 point fast Fourier transform (FFT) digital signal processing (DSP) for a 633 nm laser engaged test target scene that is subject to nearly 7 decades (107) of gradual optical attenuation, the experimental camera demonstrates an agile pixel extreme dynamic range of 136 dB, which is a 56 dB improvement over the previous CAOS-imaging demonstrations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CAOS-CMOS camera

Nabeel A. Riza, Juan Pablo La Torre, and M. Junaid Amin
Opt. Express 24(12) 13444-13458 (2016)

Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging

Wei Feng, Fumin Zhang, Weijing Wang, Wei Xing, and Xinghua Qu
Appl. Opt. 56(13) 3831-3840 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Point Grey White Paper Series, “Sony Pregius Global Shutter CMOS Imaging Performance,” (Point Grey Research, 2015).
  2. Allied Vision Technologies White Paper, “Seeing beyond the visible – short-wave infrared (SWIR) cameras offer new application fields in machine vision,” Allied Vision Technologies GmbH, Germany, (2014).
  3. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
    [Crossref]
  4. R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, United States (2009).
  5. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  6. P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
    [Crossref]
  7. T. Egloff, J. Knobbe, S. Sinzinger, and H. Grüger, “Design of a micro-opto-electro-mechanical-system-based near-infrared hyperspectral imager,” Appl. Opt. 48(34), 6583–6593 (2009).
    [Crossref] [PubMed]
  8. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20(7), 7173–7183 (2012).
    [Crossref] [PubMed]
  9. P. Mouroulis, B. Van Gorp, R. O. Green, H. Dierssen, D. W. Wilson, M. Eastwood, J. Boardman, B. C. Gao, D. Cohen, B. Franklin, F. Loya, S. Lundeen, A. Mazer, I. McCubbin, D. Randall, B. Richardson, J. I. Rodriguez, C. Sarture, E. Urquiza, R. Vargas, V. White, and K. Yee, “Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results,” Appl. Opt. 53(7), 1363–1380 (2014).
    [Crossref] [PubMed]
  10. C. Goenka, J. Semeter, J. Noto, J. Baumgardner, J. Riccobono, M. Migliozzi, H. Dahlgren, R. Marshall, S. Kapali, M. Hirsch, D. Hampton, and H. Akbari, “Multichannel tunable imager architecture for hyperspectral imaging in relevant spectral domains,” Appl. Opt. 55(12), 3149–3157 (2016).
    [Crossref] [PubMed]
  11. IMEC Hyperspectral Snapshot Imager datasheet, Belgium (2013).
  12. J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
    [Crossref]
  13. B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
    [Crossref]
  14. D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World46(6), (2010).
  15. S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
    [Crossref] [PubMed]
  16. N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
    [Crossref]
  17. N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
    [Crossref]
  18. M. J. Amin, J. P. La Torre, and N. A. Riza, “Embedded Optics and Electronics Single Digital Micromirror Device-based Agile Pixel Broadband Imager and Spectrum Analyser for Laser Beam Hotspot Detection,” Appl. Opt. 54(12), 3547–3559 (2015).
    [Crossref]
  19. N. A. Riza, M. J. Amin and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc, Rapid Publ. A 10(2015), 15021 (2015).
    [Crossref]
  20. N. A. Riza, J. P. La Torre, and M. J. Amin, “CAOS-CMOS camera,” Opt. Express 24(12), 13444–13458 (2016).
    [Crossref] [PubMed]
  21. N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).
  22. N. A. Riza, and J. P. La Torre, “Multispectral and Hyperspectral CAOS Camera,” in Light, Energy and the Environment, OSA, paper HM2E.5 (2016).
    [Crossref]
  23. N. A. Riza, “H-CAOS camera,” Year in Optics Special Issue, OSA Optics and Photonics News (OPN) Magazine (2016).
  24. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
    [Crossref]
  25. M. J. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39(6), 437–444 (1949).
    [Crossref] [PubMed]
  26. P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).
    [Crossref]
  27. S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).
  28. F. O. Huck, and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).
  29. K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
    [Crossref]
  30. J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
    [Crossref]
  31. S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition1, 436–443 (2004).
  32. Wavelength Transmittance Considerations for DPL DMD Window, DLPA031C, Texas Instrument Technical Documentation (2014).
  33. N. A. Riza and M. J. Mughal, “Broadband optical equalizer using fault tolerant digital micromirrors,” Opt. Express 11(13), 1559–1565 (2003).
    [Crossref] [PubMed]
  34. N. A. Riza and J. Chen, “Ultrahigh 47-dB optical drop rejection multiwavelength add--drop filter using spatial filtering and dual bulk acousto-optic tunable filters,” Opt. Lett. 23(12), 945–947 (1998).
    [Crossref] [PubMed]
  35. S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
    [Crossref]
  36. W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
    [Crossref]
  37. W. Kesler, “Taking the Mystery out of the Infamous Formula, “SNR=6.02+1.76 dB,” and why you should care,” Analog Devices White paper, MT-001 (2008).
  38. R. Lyons, Understanding Digital Signal Processing (Prentice Hall, 2001), pp. 93–97.
  39. J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
    [Crossref]
  40. Photodetector technical documents, Thorlabs, Germany.
  41. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]

2016 (4)

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).

C. Goenka, J. Semeter, J. Noto, J. Baumgardner, J. Riccobono, M. Migliozzi, H. Dahlgren, R. Marshall, S. Kapali, M. Hirsch, D. Hampton, and H. Akbari, “Multichannel tunable imager architecture for hyperspectral imaging in relevant spectral domains,” Appl. Opt. 55(12), 3149–3157 (2016).
[Crossref] [PubMed]

N. A. Riza, J. P. La Torre, and M. J. Amin, “CAOS-CMOS camera,” Opt. Express 24(12), 13444–13458 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (2)

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20(7), 7173–7183 (2012).
[Crossref] [PubMed]

2011 (1)

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

2010 (1)

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

2009 (1)

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

2007 (1)

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

2006 (2)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
[Crossref]

2004 (1)

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

2003 (1)

2002 (1)

1999 (1)

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

1998 (2)

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

N. A. Riza and J. Chen, “Ultrahigh 47-dB optical drop rejection multiwavelength add--drop filter using spatial filtering and dual bulk acousto-optic tunable filters,” Opt. Lett. 23(12), 945–947 (1998).
[Crossref] [PubMed]

1968 (1)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).
[Crossref]

1967 (1)

J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
[Crossref]

1949 (1)

Aach, T.

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

Akbari, H.

Amin, M. J.

Baraniuk, R. G.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Basset, C.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World46(6), (2010).

Baumgardner, J.

Bell, A. A.

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

Blais-Ouellette, S.

S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
[Crossref]

Blerkom, D. V.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World46(6), (2010).

Boardman, J.

Boult, T.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition1, 436–443 (2004).

Branzoi, V.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition1, 436–443 (2004).

Brauers, J.

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

Castracane, J.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

Charle, W.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Chen, J.

Cohen, D.

Cooley, J.

J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
[Crossref]

Cullen, P. J.

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Dahlgren, H.

Daigle, O.

S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
[Crossref]

Dierssen, H.

Downey, G.

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Eastwood, M.

Egloff, T.

Franklin, B.

Frias, J. M.

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Gao, B. C.

Geelen, B.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Gitaitis, R. D.

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Goenka, C.

Golay, M. J. E.

Gonzalez, P.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Gottlieb, P.

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).
[Crossref]

Gowen, A.

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Green, R. O.

Grüger, H.

Gutin, M.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Hampton, D.

Hirsch, M.

Kapali, S.

Kearney, K.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Knobbe, J.

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

La Torre, J. P.

Lambrechts, A.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Lewis, P.

J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
[Crossref]

Li, C.

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Lianry, Y.

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Liao, N.

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Loya, F.

Lundeen, S.

Marraccini, P. J.

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Marshall, R.

Masschelein, B.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Mazer, A.

McCubbin, I.

Migliozzi, M.

Mouroulis, P.

Mughal, M. J.

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

N. A. Riza and M. J. Mughal, “Broadband optical equalizer using fault tolerant digital micromirrors,” Opt. Express 11(13), 1559–1565 (2003).
[Crossref] [PubMed]

Murakami, Y.

Nayar, S.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition1, 436–443 (2004).

Ninkov, Z.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Noto, J.

O’Donnell, C. P.

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Ohyama, N.

Rains, G. C.

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Randall, D.

Reza, S. A.

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Riccobono, J.

Richardson, B.

Riza, N. A.

Rodriguez, J. I.

Sarture, C.

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Schulte, N.

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

Semeter, J.

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Sinzinger, S.

Sumriddetchkajorn, S.

Tack, K.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Tan, B.

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Taylor, K.

S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
[Crossref]

Tian, L.

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Tollner, E. W.

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Urquiza, E.

Van Gorp, B.

Vargas, R.

Vereecke, B.

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Wang, J.

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Wang, W.

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

Welch, P.

J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
[Crossref]

White, V.

Wilson, D. W.

Yamaguchi, M.

Yassine, R.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World46(6), (2010).

Yee, K.

Appl. Opt. (5)

Comput. Electron. Agric. (1)

W. Wang, C. Li, E. W. Tollner, G. C. Rains, and R. D. Gitaitis, “A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration,” Comput. Electron. Agric. 80, 126–134 (2012).
[Crossref]

IEEE Trans. Inf. Theory (1)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Opt. Eng. (2)

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Proc. IEEE (1)

J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” Proc. IEEE 55(10), 165–1677 (1967).
[Crossref]

Proc. SPIE (8)

S. Blais-Ouellette, O. Daigle, and K. Taylor, “The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging,” Proc. SPIE 6269, 62695H (2006).
[Crossref]

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

P. Gonzalez, K. Tack, B. Geelen, B. Masschelein, W. Charle, B. Vereecke, and A. Lambrechts, “A novel CMOS-compatible, monolithically integrated line-scan hyperspectral imager covering the VIS-NIR range,” Proc. SPIE 9855, 98550N (2016).
[Crossref]

J. Brauers, N. Schulte, A. A. Bell, and T. Aach, “Multispectral high dynamic range imaging,” Proc. SPIE 6807, 680704 (2008).
[Crossref]

B. Tan, N. Liao, L. Tian, J. Wang, and Y. Lianry, “High dynamic range multispectral imaging using liquid crystal tunable filter,” Proc. SPIE 7850, 78502A (2010).
[Crossref]

Trends Food Sci. Technol. (1)

A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Other (15)

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, United States (2009).

Point Grey White Paper Series, “Sony Pregius Global Shutter CMOS Imaging Performance,” (Point Grey Research, 2015).

Allied Vision Technologies White Paper, “Seeing beyond the visible – short-wave infrared (SWIR) cameras offer new application fields in machine vision,” Allied Vision Technologies GmbH, Germany, (2014).

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World46(6), (2010).

IMEC Hyperspectral Snapshot Imager datasheet, Belgium (2013).

N. A. Riza, M. J. Amin and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc, Rapid Publ. A 10(2015), 15021 (2015).
[Crossref]

S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).

F. O. Huck, and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).

N. A. Riza, and J. P. La Torre, “Multispectral and Hyperspectral CAOS Camera,” in Light, Energy and the Environment, OSA, paper HM2E.5 (2016).
[Crossref]

N. A. Riza, “H-CAOS camera,” Year in Optics Special Issue, OSA Optics and Photonics News (OPN) Magazine (2016).

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition1, 436–443 (2004).

Wavelength Transmittance Considerations for DPL DMD Window, DLPA031C, Texas Instrument Technical Documentation (2014).

W. Kesler, “Taking the Mystery out of the Infamous Formula, “SNR=6.02+1.76 dB,” and why you should care,” Analog Devices White paper, MT-001 (2008).

R. Lyons, Understanding Digital Signal Processing (Prentice Hall, 2001), pp. 93–97.

Photodetector technical documents, Thorlabs, Germany.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed simultaneous dual optical band CAOS camera design.

Fig. 2
Fig. 2

Shown is the Visible-NIR bands target scene created using 3 visible LEDs and 1 NIR LED. Photos show LEDs off (left) and LEDs on (right). These photos are taken with a Nikon D3300 DLSr visible camera.

Fig. 3
Fig. 3

(a) Visible scaled irradiance map obtained using the CAOS visible-NIR simultaneous dual optical band imager visible channel. (b) NIR scaled irradiance map obtained using the CAOS camera infrared channel.

Fig. 4
Fig. 4

Narrower spectral channel CAOS visible-NIR simultaneous dual optical band imager scaled irradiance maps at (a) λ = 450 nm with FWHM of 40 nm, (b) λ = 550 nm with FWHM of 40 nm and (c) λ = 620 nm with FWHM of 10 nm.

Fig. 5
Fig. 5

Shown is the normalized optical irradiance plotted versus agile pixel scan distance as the agile pixel conducts a line-by-line scan over the DMD1 plane making 442 agile pixels. Plot in (a) is generated from PD2 (NIR channel) while plot in (b) is generated from PD1 (Visible channel).

Fig. 6
Fig. 6

(a) Shown is the design of the DMD2-based TF1 module used in Channel 1 of the CAOS camera that implements CAOS-mode narrower wavelength optical spectral detection. (b) Photograph of the DMD2 plane spatially distributed visible spectrum produced by light coming from the DMD1 programmed CAOS-mode white light agile pixel.

Fig. 7
Fig. 7

Shown are the detected RF spectrum peaks |S(f)| for different visible band spectral selections programmed by the CAOS-mode of DMD2 in TF1. (a) |S(f = f0)| = 49.68 × 10−4 obtained when the entire DMD2 is programmed to direct all spectral components of the white light agile pixel at f = f0 = 400 Hz CAOS-mode to PD1. (b) |S(f0 + f3)| = 0.4581 × 10−4 obtained when DMD2 is programmed to direct only the red color spectral band light to PD1 using a f3 = 50 Hz CAOS-mode. (c) |S(f0 + f2)| = 1.091 × 10−4 obtained when DMD2 is programmed to direct only the green color spectral band light to PD1 using a f2 = 62.5 Hz CAOS-mode. (d) |S(f0 + f3)| = 0.4597 × 10−4 and |S(f0 + f1)| = 1.074 × 10−4 obtained when DMD2 is programmed to simultaneously direct the red and blue color spectral band light components to PD1 using f3 = 55.5 Hz (red) and f1 = 83.3 Hz (blue) CAOS-mode.

Fig. 8
Fig. 8

Highlighted are the detected peak |S(f1)| for different optical attenuation, DAQ voltage range configuration, and sampling duration time. (a) |S(f1)| = 1.228 obtained for a 10 volts DAQ range setting when no optical attenuation is used and ts = 5 s. (b) |S(f1)| = 1.43 × 10−5 obtained for a 10 volts DAQ range setting when ND filter is equal to OD = 5 and ts = 5 s. (c) Peak at f1 buried in system noise floor for a 10 volts DAQ range setting when ND filter is equal to OD = 5.5 and ts = 5 s. (d) |S(f1)| = 3.56 × 10−6 obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 5.5 and ts = 5 s.

Fig. 9
Fig. 9

(a) |S(f1)| = 1.902 × 10−6 obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 6 and ts = 5 s. (b) Peak at f1 buried in system noise floor for a 200mV volts DAQ range setting when ND filter is equal to OD = 6.3 and ts = 5 s. (c) S(f1)| = 6.371 × 10−7 obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 6.3 and ts = 60 s. (d) S(f1)| = 3.662 × 10−7 obtained for a 200 mV DAQ range setting when ND filter is equal to OD = 6.6 and ts = 60 s. (e) Peak at f1 buried in system noise floor for a 200mV volts DAQ range setting when ND filter is equal to OD = 6.9 and ts = 60 s.

Metrics