Abstract

Two all-solid glass photonic crystal fibers with all-normal dispersion profiles are evaluated for coherent supercontinuum generation under pumping in the 2.0 μm range. In-house boron-silicate and commercial lead-silicate glasses were used to fabricate fibers optimized for either flat dispersion, albeit with lower nonlinearity, or with larger dispersion profile curvature but with much higher nonlinearity. Recorded spectra at the redshifted edge reached 2500-2800 nm depending on fiber type. Possible factors behind these differences are discussed with numerical simulations. The fiber enabling the broadest spectrum is suggested as an efficient first stage of an all-normal dispersion cascade for coherent supercontinuum generation exceeding 3000 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

Coherent supercontinuum generation in soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Alexander Heidt, and Ryszard Buczyński
Photon. Res. 5(6) 710-727 (2017)

Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy

Mbaye Diouf, Amine Ben Salem, Rim Cherif, Hamed Saghaei, and Ahmadou Wague
Appl. Opt. 56(2) 163-169 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref] [PubMed]
  2. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
    [Crossref] [PubMed]
  3. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5(3), 932–943 (2014).
    [Crossref] [PubMed]
  4. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
    [Crossref] [PubMed]
  5. Y. Takushima and K. Kikuchi, “10-GHz Over 20-Channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
    [Crossref]
  6. C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
    [Crossref] [PubMed]
  7. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
    [Crossref] [PubMed]
  8. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-µm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
    [Crossref]
  9. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  10. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  11. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985).
    [Crossref] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
    [Crossref] [PubMed]
  14. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [Crossref]
  15. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  16. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
    [Crossref] [PubMed]
  17. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
    [Crossref] [PubMed]
  18. X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
    [Crossref] [PubMed]
  19. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
    [Crossref] [PubMed]
  20. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
    [Crossref]
  21. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
    [Crossref] [PubMed]
  22. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fiber optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley, R. Taylor, ed. (Cambridge University 2010), pp. 32–51.
  23. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
    [Crossref]
  24. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
    [Crossref] [PubMed]
  25. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (3)

2014 (4)

2013 (1)

2011 (2)

2010 (1)

2008 (3)

2007 (3)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
[Crossref] [PubMed]

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
[Crossref]

2005 (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

2003 (1)

1999 (1)

Y. Takushima and K. Kikuchi, “10-GHz Over 20-Channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

1985 (1)

Alam, S.

Aramaki, M.

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Bang, O.

Bartelt, H.

Becker, M.

Bosman, G. W.

Bradley, T.

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Buczynski, R.

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Chang, E. W.

Chen, W.

Chen, Y.

Cheng, T.

Cheung, C. S.

Clarkson, W. A.

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Daniel, J. M. O.

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Dudley, J. M.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

Feng, X.

Finazzi, V.

Gao, J.

Gao, W.

Giessen, H.

Hartung, A.

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Heidt, A.

Heidt, A. M.

Hewak, D.

Hu, L.

Huang, C.-B.

Ishida, S.

Johnson, A. M.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
[Crossref] [PubMed]

Kataura, H.

Kawagoe, H.

Kedenburg, S.

Kelly, B.

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz Over 20-Channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

Klimczak, M.

Krok, P.

Leaird, D. E.

Li, X.

Li, Z.

Liang, H.

Liao, M.

Limpert, J.

Liu, L.

Liu, Z.

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Martynkien, T.

Møller, U.

Monro, T.

Mörz, F.

Moselund, P. M.

Nagasaka, K.

Ng, W. H.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Nishizawa, N.

O’Carroll, J.

Ohishi, Y.

Omoda, E.

Park, S.-G.

Petersen, C.

Petersen, C. R.

Petropoulos, P.

Petrovich, M. N.

Phelan, R.

Poletti, F.

Pysz, D.

Qin, G.

Radzewicz, C.

Richardson, D. J.

Richter, T.

Rohwer, E. G.

Rothhardt, J.

Sakakibara, Y.

Schubert, C.

Schwoerer, H.

Sharma, U.

Siwicki, B.

Skibinski, P.

Slavík, R.

Sorokin, E.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
[Crossref] [PubMed]

Sorokina, I. T.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
[Crossref] [PubMed]

Steinle, T.

Steinmann, A.

Stepien, R.

Stolen, R. H.

Suzuki, T.

Takayanagi, J.

Takushima, Y.

Y. Takushima and K. Kikuchi, “10-GHz Over 20-Channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

Tokurakawa, M.

Tomlinson, W. J.

Tong, H.

Torres-Company, V.

Tünnermann, A.

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

Weiner, A. M.

Wheeler, N. V.

Wilson, L. R.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Wooler, J. P.

Wu, R.

Xue, T.

Yun, S. H.

Zibik, E. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Appl. Phys. B (3)

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93(2–3), 531–538 (2008).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87(1), 37–44 (2007).
[Crossref] [PubMed]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (1)

Y. Takushima and K. Kikuchi, “10-GHz Over 20-Channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (10)

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[Crossref] [PubMed]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22(20), 24179–24191 (2014).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
[Crossref] [PubMed]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[Crossref] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
[Crossref] [PubMed]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
[Crossref] [PubMed]

X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[Crossref] [PubMed]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fiber optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley, R. Taylor, ed. (Cambridge University 2010), pp. 32–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scanning electron microscopy images of the end facets of a) NL21 series: core and lattice (light color) are made of F2 glass and lattice inclusions and surrounding tube are from NC21A glass, b) NL38 series: SF6 in the core and lattice, F2 in the inclusions and the surrounding tube.

Fig. 2
Fig. 2

Transmission spectra of bulk SF6 and F2 glass samples measured over 5 mm of propagation.

Fig. 3
Fig. 3

(a) Calculated effective mode areas of the PCFs, (b) theoretical (solid traces) and measured (dotted traces) dispersion profiles of the considered PCFs, (c) confinement loss calculated for both PCF geometries (material loss neglected).

Fig. 4
Fig. 4

Supercontinuum spectra measured in the NL21 series PCFs: (a) NL21C2 fiber, (b) NL21C4 fiber. The pump source was an OPA operating at 2160 nm, pulse length was 60 fs.

Fig. 5
Fig. 5

Supercontinuum spectra measured in the NL38 series PCFs: (a) NL38A2, (b) NL38A4. The pump source was an OPA operating at 2160 nm, pulse length was 60 fs.

Fig. 6
Fig. 6

Reconstruction of experimental spectra with numerical simulations: (a) NL21C2 fiber, (b) NL38A2 fiber.

Fig. 7
Fig. 7

Modelled attenuation spectrum assumed in all simulations.

Tables (2)

Tables Icon

Table 1 Geometrical parameters of NL21C and NL38A fibers.

Tables Icon

Table 2 Values of nonlinear coefficient γ, nonlinear refractive index and effective mode areas for the NL21C2and NL38A2 fibers.

Metrics