Abstract

We present the main features of the final prototype of a pulsed optical laser, developed for pump-probe and other experiments in conjunction with the femtosecond x-ray beams at the European X-ray free-electron laser facility. Adapted to the temporal x-ray emission pattern of the facility, the laser provides 10 Hz bursts of up to 600 µs duration with intra-burst pulse frequencies as high as 4.5 MHz. In this mode, we have generated pulses as short as 12 fs at 350 W average power during the burst and with beam qualities close to the diffraction limit. This is, to the best of our knowledge, the highest power to date of a few-cycle laser operating at a center wavelength of 800 nm. Important for experimental flexibility, the laser can be configured in various unique ways, enabling, e.g., energy scaling to >3 mJ per pulse through a frequency change down to 100 kHz and the generation of nearly transform limited pulses between 12 fs and 300 fs. In addition to the 800 nm femtosecond beam line, a synchronized long pulse (0.8 ps or 400 ps) 1030 nm beam can be utilized, offering up to 4 kW burst average power, i.e. up to 40 mJ per pulse at 100 kHz. Efficient nonlinear wavelength conversion and tuning through intrinsic and external means further enhance the capabilities of the laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power burst-mode optical parametric amplifier with arbitrary pulse selection

M. Pergament, M. Kellert, K. Kruse, J. Wang, G. Palmer, L. Wissmann, U. Wegner, and M. J. Lederer
Opt. Express 22(18) 22202-22210 (2014)

Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier

M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella
Opt. Express 20(5) 5038-5043 (2012)

Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach
Opt. Express 18(5) 4689-4694 (2010)

References

  • View by:
  • |
  • |
  • |

  1. “Technical Design Report (TDR) of the European XFEL” (Chapter 6: Photon Beamlines and Scientific Instruments), http://xfel.desy.de/localfsExplorer_read?currentPath=/afs/desy.de/group/xfel/wof/EPT/TDR/XFEL-TDR-final.pdf
  2. M. Pergament, M. Kellert, K. Kruse, J. Wang, G. Palmer, L. Wissmann, U. Wegner, and M. J. Lederer, “High power burst-mode optical parametric amplifier with arbitrary pulse selection,” Opt. Express 22(18), 22202–22210 (2014).
    [Crossref] [PubMed]
  3. A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
    [Crossref]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
    [Crossref]
  5. K. Kruse, M. Pergament, M. Kellert, C. Mendez, G. Kulcsar, and M. J. Lederer, “All-fiber 1030nm burst-mode front-end amplifier for the European XFEL pump-probe laser development for the European X-Ray Free-Electron Laser Facility,“ Paper Mo4.5, Ultrafast Optics Conference IX, 04–08 March 2013, Davos.
  6. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [Crossref] [PubMed]
  7. M. Kellert, M. Pergament, K. Kruse, J. Wang, G. Palmer, G. Priebe, L. Wissmann, U. Wegner, M. Emons, J. Morgenweg, T. Mans, and M. J. Lederer, “5kW burst-mode femtosecond amplifier system for the European XFEL pump-probe laser development,“ Talk CA-3.5, (Conference on Lasers and Electro-Optics (CLEO) Europe 2015), 21–25 June 2015, Munich.
  8. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [Crossref] [PubMed]
  9. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [Crossref] [PubMed]
  10. SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM http://www.as-photonics.com/snlo
  11. T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze, and U. Morgner, “Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers,” Opt. Express 21(1), 949–959 (2013).
    [Crossref] [PubMed]
  12. S. Adachi, T. Horio, and T. Suzuki, “Generation of intense single-order harmonic pulse in the vacuum ultraviolet region using a deep ultraviolet driving laser,” Opt. Lett. 37(11), 2118–2120 (2012).
    [Crossref] [PubMed]
  13. TOPAS-prime, http://www.lightcon.com/Product/TOPAS-Prime.html

2014 (1)

2013 (1)

2012 (1)

2009 (1)

2003 (2)

1998 (1)

1992 (1)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[Crossref]

Adachi, S.

Binhammer, T.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[Crossref]

Fujimoto, J. G.

Gopinath, J. T.

Harth, A.

Hoffmann, H. D.

Horio, T.

Iaconis, C.

Ippen, E. P.

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[Crossref]

Kaertner, F. X.

Kellert, M.

Kim, J.

Kolodziejski, L. A.

Kruse, K.

Kuzucu, O.

Lang, T.

Lederer, M. J.

Mans, T.

Matyschok, J.

Morgner, U.

Palmer, G.

Pergament, M.

Petrich, G. S.

Piskarskas, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[Crossref]

Poprawe, R.

Rotarius, G.

Russbueldt, P.

Schibli, T. R.

Schultze, M.

Suzuki, T.

Tandon, S. N.

Walmsley, I. A.

Wang, J.

Wegner, U.

Weitenberg, J.

Wissmann, L.

Opt. Commun. (1)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

Other (5)

K. Kruse, M. Pergament, M. Kellert, C. Mendez, G. Kulcsar, and M. J. Lederer, “All-fiber 1030nm burst-mode front-end amplifier for the European XFEL pump-probe laser development for the European X-Ray Free-Electron Laser Facility,“ Paper Mo4.5, Ultrafast Optics Conference IX, 04–08 March 2013, Davos.

“Technical Design Report (TDR) of the European XFEL” (Chapter 6: Photon Beamlines and Scientific Instruments), http://xfel.desy.de/localfsExplorer_read?currentPath=/afs/desy.de/group/xfel/wof/EPT/TDR/XFEL-TDR-final.pdf

M. Kellert, M. Pergament, K. Kruse, J. Wang, G. Palmer, G. Priebe, L. Wissmann, U. Wegner, M. Emons, J. Morgenweg, T. Mans, and M. J. Lederer, “5kW burst-mode femtosecond amplifier system for the European XFEL pump-probe laser development,“ Talk CA-3.5, (Conference on Lasers and Electro-Optics (CLEO) Europe 2015), 21–25 June 2015, Munich.

SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM http://www.as-photonics.com/snlo

TOPAS-prime, http://www.lightcon.com/Product/TOPAS-Prime.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the PP-laser prototype: AOM (Acousto-Optical Modulator), PC (Pockels cell), SHG (Second Harmonic Generation), Φ (dispersion management with multi-bounce chirped mirrors and/or material), cmBCC (common mode Balanced Cross Correlator), dmBCC (differential mode Balanced Cross Correlator), NOPA (Non-collinear Optical Parametric Amplifier). Seed and pump beams are controlled by beam pointing stabilization systems.

Fig. 2
Fig. 2

Near field profiles of the NOPA pump beams (515 nm). (a) NOPA I, (b) NOPA II, (c) NOPA III. The given dimensions are 1/e2 diameters from Gaussian intensity fits. Ellipticity and Gaussian intensity fit values are >90% in all cases. The images were taken with an exposure time of 80 µs near the center of a single burst.

Fig. 3
Fig. 3

Spectral characteristics of multistage amplifier in short pulse mode. (a) two stages (set points 1 and 2), (b) three stages (set points 3 and 4). Insets show images of the near field beam at the output. Spectra and images were taken with an exposure time of 80 µs near the center of a single burst.

Fig. 4
Fig. 4

Caustic scan of the two stage NOPA: 1.13 MHz rep-rate, 350 µJ single pulse energy. The Gaussian intensity profile fit quality is >94% over 15 Rayleigh ranges. Data points with crosses correspond to the beam images, taken with an exposure time of 40 µsec at the center of a single burst. The dashed lines depict the fitted caustic, used to estimate an M2<1.1.

Fig. 5
Fig. 5

Caustic of three stage NOPA: 100kHz rep-rate, 3.25mJ single pulse energy. Gaussian intensity profile fit >92% over 5 Rayleigh ranges. Data points with crosses correspond to the beam images, taken with an exposure time of 40 µsec at the center of a single burst. The dashed lines depict the fitted caustic, used to estimate an M2<1.2.

Fig. 6
Fig. 6

Characterization of amplified pulses at 100 kHz intra-burst rep-rate, 3.25 mJ single pulse energy. (a) blue curve, short pulse mode: reconstructed pulse shape using SPIDER and red curve, long pulse mode: autocorrelation, (b) corresponding spectra, taken with an exposure time of 80 µs near the center of a single burst.

Fig. 7
Fig. 7

Different modes of burst operation at 100 kHz intra-burst rep-rate (set point 4). (a) full 600 µs long burst, (b) two selected pulses. The PC was used for burst and pump pulse selection.

Fig. 8
Fig. 8

Intra-burst scanning measurement of near field profile and spectra. (top) full 600 µs long burst (200 μs steps), (bottom) two pulses only. Spectra and images are of a single burst and were taken with an exposure time of 80 µs.

Fig. 9
Fig. 9

Measured pulse energies for SHG (a) and for THG (b) at 15 fs (red) and 55 fs (black) pulse duration, dotted curves show results from simulations with Chi2D.

Fig. 10
Fig. 10

Measured power spectra for SHG (a) and THG (b) at 15 fs (red) and 55 fs (black) pulse duration, τFL: theoretical pulse duration limit from Fourier transformation estimating flat phase with no dispersion contribution.

Fig. 11
Fig. 11

Tuning curves of TOPAS-prime with VIS and IR extensions when pumped by the 55 fs, 1.75 mJ, 100 kHz burst-mode pulses from the PP-laser.

Tables (1)

Tables Icon

Table 1 Operating set points of the PP-laser

Metrics