Abstract

Field-based polarization measurements are essential for the completeness of information when exploiting the complex nature of optical responses of target objects. Here, we demonstrate digital holographic microscopy for quantifying a polarization-sensitive map of an object with a single-shot measurement. Using the image-splitting device generating four different copies of an object image and a separate reference beam of an off-axis configuration enables single-shot and multi-imaging capability. With the use of two polarization filters, four complex field images containing an object’s polarization response are obtained simultaneously. With this method, we can construct a complete set of 2-by-2 Jones matrix at every single point of the object’s images, and thus clearly visualize the anisotropic structures of biological tissues with low level of birefringence. This method will facilitate the high-precision measurements for fast dynamics of the polarization properties of biological specimens.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix

Youngchan Kim, Joonwoo Jeong, Jaeduck Jang, Mahn Won Kim, and YongKeun Park
Opt. Express 20(9) 9948-9955 (2012)

Single-shot and phase-shifting digital holographic microscopy using a 2-D grating

Taeseok Daniel Yang, Hyung-Jin Kim, Kyoung J. Lee, Beop-Min Kim, and Youngwoon Choi
Opt. Express 24(9) 9480-9488 (2016)

LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy

Jongchan Park, Hyeonseung Yu, Jung-Hoon Park, and YongKeun Park
Opt. Express 22(20) 24304-24311 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Montarou and T. K. Gaylord, “Two-wave-plate compensator method for single-point retardation measurements,” Appl. Opt. 43(36), 6580–6595 (2004).
    [Crossref] [PubMed]
  2. C. C. Montarou, T. K. Gaylord, B. L. Bachim, A. I. Dachevski, and A. Agarwal, “Two-wave-plate compensator method for full-field retardation measurements,” Appl. Opt. 45(2), 271–280 (2006).
    [Crossref] [PubMed]
  3. J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
    [Crossref] [PubMed]
  4. R. Oldenbourg and G. Mei, “New Polarized Light Microscope with Precision Universal Compensator,” J. Microsc. 180(2), 140–147 (1995).
    [Crossref] [PubMed]
  5. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
    [Crossref] [PubMed]
  6. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
    [Crossref] [PubMed]
  7. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11(13), 1510–1519 (2003).
    [Crossref] [PubMed]
  8. I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
    [Crossref] [PubMed]
  9. F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
    [Crossref] [PubMed]
  10. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres,” J. Opt. A, Pure Appl. Opt. 1(2), 197–200 (1999).
    [Crossref]
  11. A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27(2), 86–88 (2002).
    [Crossref] [PubMed]
  12. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [Crossref] [PubMed]
  14. M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
    [Crossref] [PubMed]
  15. N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15(26), 17690–17698 (2007).
    [Crossref] [PubMed]
  16. S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23(12), 16383–16406 (2015).
    [Crossref] [PubMed]
  17. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
    [Crossref] [PubMed]
  18. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  19. T. Tahara, Y. Awatsuji, Y. Shimozato, T. Kakue, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry,” Opt. Lett. 36(16), 3254–3256 (2011).
    [Crossref] [PubMed]
  20. R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, and M. Takeda, “Stokes holography,” Opt. Lett. 37(5), 966–968 (2012).
    [Crossref] [PubMed]
  21. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  22. R. C. Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31(7), 488–493 (1941).
    [Crossref]
  23. X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
    [Crossref] [PubMed]
  24. T. D. Yang, H. J. Kim, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24(9), 9480–9488 (2016).
    [Crossref] [PubMed]
  25. M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
    [Crossref] [PubMed]
  26. P. Whittaker and P. B. Canham, “Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy,” Matrix 11(1), 56–62 (1991).
    [Crossref] [PubMed]
  27. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
    [Crossref] [PubMed]
  28. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (1)

2012 (2)

2011 (1)

2010 (2)

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref] [PubMed]

I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

2008 (3)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

2005 (1)

2004 (1)

2003 (3)

2002 (2)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref] [PubMed]

A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27(2), 86–88 (2002).
[Crossref] [PubMed]

2001 (1)

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
[Crossref] [PubMed]

1999 (1)

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres,” J. Opt. A, Pure Appl. Opt. 1(2), 197–200 (1999).
[Crossref]

1996 (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

1995 (1)

R. Oldenbourg and G. Mei, “New Polarized Light Microscope with Precision Universal Compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

1991 (1)

P. Whittaker and P. B. Canham, “Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy,” Matrix 11(1), 56–62 (1991).
[Crossref] [PubMed]

1941 (1)

Agarwal, A.

Aknoun, S.

Awatsuji, Y.

Bachim, B. L.

Baxter, G.

Bon, P.

Canham, P. B.

P. Whittaker and P. B. Canham, “Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy,” Matrix 11(1), 56–62 (1991).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Colomb, T.

Cuche, E.

Curl, C. L.

Dachevski, A. I.

Delbridge, L. M. D.

Depeursinge, C.

Dragomir, N.

Dragomir, N. M.

Dürr, F.

El-Diasty, F.

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres,” J. Opt. A, Pure Appl. Opt. 1(2), 197–200 (1999).
[Crossref]

Farrell, P.

Fligny, C.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Gaylord, T. K.

Gillette, M. U.

Goh, X. M.

Guo, C. S.

Hernest, M.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Itou, H.

Jang, J.

Javidi, B.

Jeong, J.

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref] [PubMed]

Jones, R. C.

Juskaitis, R.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Kakue, T.

Kaneko, T.

Kim, B. M.

Kim, D. Y.

I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Kim, G. H.

Kim, H. J.

Kim, M.

Kim, M. W.

Kim, S. H.

Kim, Y.

Kubota, T.

Kuhn, J. R.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
[Crossref] [PubMed]

Lee, K. J.

Limberger, H. G.

Liu, X.

Makita, S.

Marquet, P.

Martin, J.-L.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Massoumian, F.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Matoba, O.

Mei, G.

R. Oldenbourg and G. Mei, “New Polarized Light Microscope with Precision Universal Compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Michna, M. L.

Millet, L. J.

Miyamoto, Y.

Monneret, S.

Montarou, C. C.

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Murata, S.

Naik, D. N.

Neil, M. A. A.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Nishio, K.

Nitanai, E.

Nomura, T.

Numata, T.

Oka, K.

Oldenbourg, R.

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
[Crossref] [PubMed]

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

R. Oldenbourg and G. Mei, “New Polarized Light Microscope with Precision Universal Compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Park, Q. H.

Park, Y.

Poenie, M.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
[Crossref] [PubMed]

Popescu, G.

Roberts, A.

Salathé, R. P.

Savatier, J.

Schanne-Kleinand, M.-C.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Shimozato, Y.

Shin, I. H.

I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Shin, S. M.

I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Shribak, M.

Singh, R. K.

Strupler, M.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Tahara, T.

Takeda, M.

Tharaux, P.-L.

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

Thorn, K.

Ura, S.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Wang, B. Y.

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref] [PubMed]

Wang, Z.

Wattellier, B.

Whittaker, P.

P. Whittaker and P. B. Canham, “Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy,” Matrix 11(1), 56–62 (1991).
[Crossref] [PubMed]

Wilson, T.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Wu, Z.

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
[Crossref] [PubMed]

Yamanari, M.

Yang, T. D.

Yasuno, Y.

Yi, G. R.

Yoon, C.

Appl. Opt. (4)

Biophys. J. (1)

J. R. Kuhn, Z. Wu, and M. Poenie, “Modulated polarization microscopy: a promising new approach to visualizing cytoskeletal dynamics in living cells,” Biophys. J. 80(2), 972–985 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Kleinand, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13(5), 054041 (2008).
[Crossref] [PubMed]

I. H. Shin, S. M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref] [PubMed]

J. Microsc. (2)

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

R. Oldenbourg and G. Mei, “New Polarized Light Microscope with Precision Universal Compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres,” J. Opt. A, Pure Appl. Opt. 1(2), 197–200 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

Matrix (1)

P. Whittaker and P. B. Canham, “Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy,” Matrix 11(1), 56–62 (1991).
[Crossref] [PubMed]

Nature (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental schematic for the polarization sensitive quantitative phase microscopy (PSQPM). (a) Two lasers are used for the preparation of two orthogonal input polarization. Two linear polarizers are placed after the ISD as analyzers with the polarization axes as depicted in the inset on the bottom right. The reference beam consists of the two laser beams spatially separate by the beam blocks as shown in the inset on the bottom left. PBS1 and PBS2: polarizing beam splitters, BS1 and BS2: non-polarizing beam splitters, LP1 and LP2: linear polarizers, BL1 and BL2: beam blocks, M: mirror, OL: objective lens, IP1 and IP2: image plane, 2G: 2-D grating, ISD: image-splitting device. (b) Four copies of an object images generated by the ISD on the camera. The configuration for the polarizations at the camera is denoted with arrows. Xi,j: object images at the camera at each quadrant.

Fig. 2
Fig. 2

Measurement of Jones matrix for a linear polarizer. (a) The amplitudes of polarization-selective images for a linear polarizer at the orientation angle of 0°, 45°, and 90°. (b) Amplitudes of Jones matrix elements for the linear polarizer at the corresponding orientation angles. (c) Normalized average values of Jones matrix elements.

Fig. 3
Fig. 3

Complete Jones matrix components for the mouse kidney tissue. (a) The amplitude and (b) phase images of polarization-selective images of the kidney tissue. (c) The amplitude and (d) phase images for the Jones matrix elements of the kidney tissue. Scale bar: 50 μm.

Fig. 4
Fig. 4

Polarization response of a mouse-tail tendon and its analysis. (a) The amplitude and (b) phase images of the Jones matrix elements for the mouse-tail tendon. Relatively strong signals are observed in the off-diagonal elements due to the birefringence in the tendon tissue. (c) Phase retardation map between the two principal axes. (d) Distribution of the eccentricity of the polarization eigenvector. Scale bar: 50 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E (t)=( E x e iωt E y e iωt )( C 1 C 2 ),
E S = E 1S E 2S = C 1S ( 1 0 ) C 2S ( 0 1 ),
X ij =( A i J E S ) E Rj =( A i J( E S1 E S2 ) ) E Rj =( A i J E Sj ) E Rj ,
X 11 =0.5 C S1 C R1 ( J 11 + J 21 ) X 12 =0.5 C S2 C R2 ( J 22 + J 12 ) X 21 =0.5 C S1 C R1 ( J 11 J 21 ) X 22 =0.5 C S2 C R2 ( J 22 J 12 ),
J 11 = C 2 ( X 11 + X 21 ) J 12 = C 2 ( X 12 X 22 ) J 21 = C 2 ( X 11 X 21 ) J 22 = C 2 ( X 12 + X 22 ),
J pol (θ)=( cos 2 θ sinθcosθ sinθcosθ sin 2 θ ),

Metrics