Abstract

Although the proof of concept for slope-assisted (SA-) Brillouin optical correlation-domain reflectometry (BOCDR) has been demonstrated, no reports on its detailed operation have been provided to date. We theoretically and experimentally investigate the relationship between the system output (power-change distribution) of SA-BOCDR and the actual Brillouin frequency shift (BFS) distribution along the sensing fiber and show that these two are not identical. When the strained fiber section is much longer than the nominal spatial resolution, the actual distribution of the BFS (i.e., strain) is well reproduced by the power-change distribution. However, when the length of the strained section is equal to or only a few times the nominal resolution, the correct BFS distribution cannot be directly obtained. Even when the strained section is shorter than the nominal resolution, a shift in the power change can still be observed, which is not the case for standard BOCDR systems. This unique “beyond-nominal-resolution” effect will be of great use in practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)

Yosuke Mizuno, Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 16(16) 12148-12153 (2008)

Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme

Yosuke Mizuno, Zuyuan He, and Kazuo Hotate
Opt. Express 17(11) 9040-9046 (2009)

Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme

Yosuke Mizuno, Zuyuan He, and Kazuo Hotate
Opt. Express 18(6) 5926-5933 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
    [Crossref]
  3. H. J. Park and M. H. Song, “Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference,” Sensors (Basel) 8(10), 6769–6776 (2008).
    [Crossref]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).
  5. T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  7. A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
    [Crossref] [PubMed]
  8. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  9. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [Crossref] [PubMed]
  10. D. Garus, T. Gogolla, K. Krebber, and F. Schliep, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett. 21(17), 1402–1404 (1996).
    [Crossref] [PubMed]
  11. R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
    [Crossref]
  12. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  13. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  14. W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5(8), 082503 (2012).
    [Crossref]
  15. C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
    [Crossref]
  16. J. H. Jeong, K. H. Chung, S. B. Lee, K. Y. Song, J. M. Jeong, and K. Lee, “Linearly configured BOCDA system using a differential measurement scheme,” Opt. Express 22(2), 1467–1473 (2014).
    [Crossref] [PubMed]
  17. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  18. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
  19. D. Iida and F. Ito, “Detection sensitivity of Brillouin scattering near Fresnel reflection in BOTDR measurement,” J. Lightwave Technol. 26(4), 417–424 (2008).
    [Crossref]
  20. M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).
  21. N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
    [Crossref]
  22. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
    [Crossref]
  23. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  24. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
    [Crossref] [PubMed]
  25. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
    [Crossref] [PubMed]
  26. Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
    [Crossref]
  27. S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
    [Crossref]
  28. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
    [Crossref]
  29. N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
    [Crossref]
  30. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
  31. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  32. X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
    [Crossref]
  33. A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
    [Crossref]
  34. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
    [Crossref]
  35. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).
  36. K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
    [Crossref]
  37. S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
    [Crossref]

2016 (3)

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

2015 (2)

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

2014 (3)

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

J. H. Jeong, K. H. Chung, S. B. Lee, K. Y. Song, J. M. Jeong, and K. Lee, “Linearly configured BOCDA system using a differential measurement scheme,” Opt. Express 22(2), 1467–1473 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5(8), 082503 (2012).
[Crossref]

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

2011 (4)

2010 (4)

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
[Crossref]

2009 (2)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (2)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

2002 (2)

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
[Crossref]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

1989 (1)

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1979 (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Adachi, S.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

Bao, X.

Bernini, R.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Chen, J.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5(8), 082503 (2012).
[Crossref]

Chen, L.

Chung, K. H.

Coscetta, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Dong, Y.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Garus, D.

Gogolla, T.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

He, Z.

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Hotate, K.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Hu, X.

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

Iida, D.

Ito, F.

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Jeong, J. H.

Jeong, J. M.

Jin, C.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5(8), 082503 (2012).
[Crossref]

Kishi, M.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Koyamada, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Krebber, K.

Kressel, I.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Lee, H.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

Lee, K.

Lee, S. B.

Li, W.

Li, Y.

Luo, H.

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

Manotham, S.

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

Meng, Z.

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

Minardo, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
[Crossref]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Motil, A.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Nitta, N.

N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
[Crossref]

Ohno, H.

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

Ohsaki, M.

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

Omatsu, T.

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
[Crossref]

Park, H. J.

H. J. Park and M. H. Song, “Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference,” Sensors (Basel) 8(10), 6769–6776 (2008).
[Crossref]

Peled, Y.

Sakairi, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

Schliep, F.

Shibata, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Song, K. Y.

Song, M. H.

H. J. Park and M. H. Song, “Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference,” Sensors (Basel) 8(10), 6769–6776 (2008).
[Crossref]

Sun, Q.

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

Takahashi, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Takeuchi, N.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

Tateda, M.

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Tu, X.

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

Tur, M.

Yamashita, R. K.

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

Yaron, L.

Zeni, L.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Zhang, C.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

Zou, W.

Appl. Phys. Express (2)

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5(8), 082503 (2012).
[Crossref]

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

IEEE Photonics J. (2)

R. Bernini, A. Minardo, and L. Zeni, “Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing,” IEEE Photonics J. 4(1), 48–56 (2012).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19(23), 1910–1912 (2007).
[Crossref]

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

IEICE Trans. Commun. (2)

M. Ohsaki, M. Tateda, T. Omatsu, and H. Ohno, “Spatial resolution enhancement of distributed strain measurement using BOTDR by partially gluing optical fiber,” IEICE Trans. Commun. E85-B(8), 1636–1639 (2002).

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Lightwave Technol. (5)

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

D. Iida and F. Ito, “Detection sensitivity of Brillouin scattering near Fresnel reflection in BOTDR measurement,” J. Lightwave Technol. 26(4), 417–424 (2008).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” J. Lightwave Technol. 28(22), 3300–3306 (2010).

J. Non-Cryst. Solids (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

J. Opt. (2)

X. Tu, H. Luo, Q. Sun, X. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” J. Opt. 17(10), 105503 (2015).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).

Opt. Commun. (1)

Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010).
[Crossref]

Opt. Express (8)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme,” Opt. Express 18(6), 5926–5933 (2010).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

J. H. Jeong, K. H. Chung, S. B. Lee, K. Y. Song, J. M. Jeong, and K. Lee, “Linearly configured BOCDA system using a differential measurement scheme,” Opt. Express 22(2), 1467–1473 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Rev. (1)

N. Nitta, M. Tateda, and T. Omatsu, “Spatial resolution enhancement in BOTDR by spectrum separation method,” Opt. Rev. 9(2), 49–53 (2002).
[Crossref]

Proc. SPIE (1)

S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” Proc. SPIE 8351, 835136 (2012).
[Crossref]

Sensors (Basel) (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

H. J. Park and M. H. Song, “Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference,” Sensors (Basel) 8(10), 6769–6776 (2008).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Deduced strain distributions directly obtained from the final power outputs of (a) standard BOCDR and (b, c) SA-BOCDR. Note that the traces in (a) give the correct strain distributions.
Fig. 2
Fig. 2 (a) Experimental setup for SA-BOCDR, which is basically the same as Fig. 3 of Ref. 34. EDFA: erbium-doped fiber amplifier, ESA: electrical spectrum analyzer, FUT: fiber under test, OSC: oscilloscope, PD: photo diode, PSCR: polarization scrambler. The blue curves indicate silica fibers, and the green lines indicate electrical cables. (b) Structure of an FUT with a relatively high spatial resolution (9.5 cm). (c) Structure of an FUT with a relatively low spatial resolution (19.6 cm).
Fig. 3
Fig. 3 Deduced strain distributions with a spatial resolution of 9.5 cm: (a) example measurement along the whole length of the FUT when a 1500 µε strain was applied to a 20-cm-long section, and magnified views when strains of (b) 750 µε and (c) 1500 µε were applied to 5-cm- to 100-cm-long sections. In (b) and (c), each distribution was shifted by 3000 µε, and the dotted lines indicate the simulated data.
Fig. 4
Fig. 4 Magnified views of the deduced strain distributions with a spatial resolution of 19.6 cm; a 1500 µε strain was applied to 5-cm- to 20-cm-long sections. Each distribution was shifted by 3000 µε, and the dotted lines indicate the simulated data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d m = c 2n f m ,
Δz= cΔ ν B 2πn f m Δf ,

Metrics