Abstract

We demonstrate depth-resolved absorption imaging by scanning an object through a conical shell of X-rays. We measure ring shaped projections and apply tomosynthesis to extract optical sections at different axial focal plane positions. Three-dimensional objects have been imaged to validate our theoretical treatment. The novel principle of our method is scalable with respect to both scan size and X-ray energy. A driver for this work is to complement previously reported methods concerning the measurement of diffracted X-rays for structural analysis. The prospect of employing conical shell beams to combine both absorption and diffraction modalities would provide enhanced analytical utility and has many potential applications in security screening, process control and diagnostic imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sporadic absorption tomography using a conical shell X-ray beam

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers
Opt. Express 25(26) 33029-33042 (2017)

Combined X-ray diffraction and absorption tomography using a conical shell beam

A. Shevchuk, J. P. O. Evans, A. J. Dicken, F. Elarnaut, D. Downes, S. X. Godber, and K. D. Rogers
Opt. Express 27(15) 21092-21101 (2019)

Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, F. Elarnaut, A. Shevchuk, D. Downes, and M. Wilson
Opt. Express 27(14) 19834-19841 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
    [Crossref] [PubMed]
  2. T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
    [Crossref] [PubMed]
  3. A. P. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).
    [Crossref] [PubMed]
  4. I. Reiser and S. Glick, Tomosynthesis Imaging (Taylor and Francis CRC, 2014).
  5. F. Xu, L. Helfen, T. Baumbach, and H. Suhonen, “Comparison of image quality in computed laminography and tomography,” Opt. Express 20(2), 794–806 (2012).
    [Crossref] [PubMed]
  6. K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
    [Crossref]
  7. K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
    [Crossref] [PubMed]
  8. M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).
  9. M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).
    [Crossref] [PubMed]
  10. S. Singh and M. Singh, “Explosives detection systems (EDS) for aviation security,” Signal Process. 83(1), 31–55 (2003).
    [Crossref]
  11. K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref] [PubMed]
  12. G. Harding, “X-ray diffraction imaging--a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
    [Crossref] [PubMed]
  13. A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
    [Crossref] [PubMed]
  14. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
    [Crossref]
  15. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  16. A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
    [Crossref] [PubMed]
  17. P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
    [Crossref]
  18. A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
    [Crossref] [PubMed]
  19. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  20. F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
    [Crossref]
  21. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [Crossref] [PubMed]
  22. Y. Levakhina, Three-Dimensional Digital Tomosynthesis: Iterative Reconstruction, Artifact Reduction and Alterative Acquisition Geometry (Springer, 2014).
  23. J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
    [Crossref]
  24. A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
    [Crossref]
  25. A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
    [Crossref] [PubMed]

2016 (5)

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).

F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

2013 (3)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
[Crossref] [PubMed]

2012 (4)

F. Xu, L. Helfen, T. Baumbach, and H. Suhonen, “Comparison of image quality in computed laminography and tomography,” Opt. Express 20(2), 794–806 (2012).
[Crossref] [PubMed]

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

2009 (1)

G. Harding, “X-ray diffraction imaging--a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

2003 (1)

S. Singh and M. Singh, “Explosives detection systems (EDS) for aviation security,” Signal Process. 83(1), 31–55 (2003).
[Crossref]

1944 (1)

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

Arce, G. R.

Arguello, H.

Baumbach, T.

Beale, A. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Bernardi, D.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Brady, D. J.

Chan, J.

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Chan, J. W.

Clement, J. G.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Cole, M. T.

M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).

Cuadros, A. P.

Dabrowski, K. M.

K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
[Crossref] [PubMed]

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

Di Michiel, M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Dicken, A.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Dicken, A. J.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Dörr, J.

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

Dul, D. T.

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
[Crossref] [PubMed]

Evans, J. P. O.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Evans, P.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Fantò, C.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Fujiwara, H.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Gibson, E. K.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Godber, S.

Godber, S. X.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Gomi, T.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Greenberg, J. A.

Greenwood, C.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Harding, G.

G. Harding, “X-ray diffraction imaging--a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

Hassan, M.

Helfen, L.

Houssami, N.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Jacques, S. D. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Kirkpatrick, P.

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

Korecki, P.

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
[Crossref] [PubMed]

Li, F.

F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
[Crossref]

Liu, Z.

F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
[Crossref]

Luparia, A.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Lyburn, I.

Lyburn, I. D.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

Macaskill, P.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Martin, R. M.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Milne, W. I.

M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).

Nakajima, M.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Odinaka, I.

Ostillio, L.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Parmee, R. J.

M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).

Peitsch, C.

Pellegrini, M.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Prokopiou, D.

Rogers, J.

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Rogers, K.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Rogers, K. D.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Rosenbaum, M.

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

Saito, K.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Sakaguchi, K.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Sauer-Greff, W.

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

Shevchuk, A.

Singh, M.

S. Singh and M. Singh, “Explosives detection systems (EDS) for aviation security,” Signal Process. 83(1), 31–55 (2003).
[Crossref]

Singh, S.

S. Singh and M. Singh, “Explosives detection systems (EDS) for aviation security,” Signal Process. 83(1), 31–55 (2003).
[Crossref]

Stone, N.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Suhonen, H.

Sun, T.

F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
[Crossref]

Takeda, T.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Tuttobene, P.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Umeda, T.

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Urbansky, R.

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

Valentini, M.

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Wells, K.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Wróbel, A.

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

Xu, F.

Zioupos, P.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Adv. Radio Sci. (1)

J. Dörr, M. Rosenbaum, W. Sauer-Greff, and R. Urbansky, “Automatic focus algorithms for TDI X-Ray image reconstruction,” Adv. Radio Sci. 10, 145–151 (2012).
[Crossref]

Appl. Phys. Lett. (2)

K. M. Dąbrowski, D. T. Dul, A. Wróbel, and P. Korecki, “X-ray microlaminography with polycapillary optics,” Appl. Phys. Lett. 102(22), 224104 (2013).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Appl. Radiat. Isot. (3)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

G. Harding, “X-ray diffraction imaging--a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

Br. J. Radiol. (1)

T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, and K. Sakaguchi, “Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study,” Br. J. Radiol. 85(1017), e622–e629 (2012).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

J. Appl. Cryst. (2)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

F. Li, Z. Liu, and T. Sun, “Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary,” J. Appl. Cryst. 49(2), 627–631 (2016).
[Crossref]

Lancet Oncol. (1)

D. Bernardi, P. Macaskill, M. Pellegrini, M. Valentini, C. Fantò, L. Ostillio, P. Tuttobene, A. Luparia, and N. Houssami, “Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study,” Lancet Oncol. 17(8), 1105–1113 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

M. T. Cole, R. J. Parmee, and W. I. Milne, “Nanomaterial-based X-ray sources,” Nanotechnology 27(8), 1–9 (2016).

Opt. Express (8)

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

F. Xu, L. Helfen, T. Baumbach, and H. Suhonen, “Comparison of image quality in computed laminography and tomography,” Opt. Express 20(2), 794–806 (2012).
[Crossref] [PubMed]

K. M. Dąbrowski, D. T. Dul, and P. Korecki, “X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept,” Opt. Express 21(3), 2920–2927 (2013).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

A. P. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).
[Crossref] [PubMed]

M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

Sci. Rep. (1)

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6, 29011 (2016).
[Crossref] [PubMed]

Signal Process. (1)

S. Singh and M. Singh, “Explosives detection systems (EDS) for aviation security,” Signal Process. 83(1), 31–55 (2003).
[Crossref]

Other (2)

I. Reiser and S. Glick, Tomosynthesis Imaging (Taylor and Francis CRC, 2014).

Y. Levakhina, Three-Dimensional Digital Tomosynthesis: Iterative Reconstruction, Artifact Reduction and Alterative Acquisition Geometry (Springer, 2014).

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (1460 KB)      X-ray Movie Frame
» Visualization 2: AVI (2430 KB)      X-ray Movie Core

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A conical shell beam is incident normally upon a flat detector. The X-ray source and detector form a rigid body during the scan i.e. each undergoes a relative in-plane translation with respect to the object under inspection. The resultant focal plane positions within the inspection volume are parallel with the detection plane.
Fig. 2
Fig. 2 (a) Conical shell interrogating beam with a half-opening angle of ϕ. (b) Discretised ring sample v with intensity i at polar coordinate ( r,γ ) where the pole is the piercing point of the symmetry axis on the detector plane.
Fig. 3
Fig. 3 (a) A sample position v at angle γ on an annular projectionA; part of a series of coplanar annular projections B collected at discrete intervals along the x,y axes. (b) Composite oblique projection C comprised of pixels x,y associated with a fixed angular position γ (constant r value); part of a series of oblique projections Dcollected at discrete angular intervals in γ(or annular sample positions v).
Fig. 4
Fig. 4 A focal position is shown by considering coincident annular beam rays originating from a continuum of different point source locations during a rectilinear scan. The separation between conjugate points yields depth dependent parallax ( P r P r ) where P r and P r are linear distances measured with respect to reference locations at ±r , respectively.
Fig. 5
Fig. 5 Calibrated phantom comprising of thin metal shapes on plastic substrates.
Fig. 6
Fig. 6 Example of composite oblique images separated by an interval of π in γ (left π/2 ) and (right 3π/2 ) from a sequence D comprised of 360 different views of the phantom.
Fig. 7
Fig. 7 Raw optical sections of the phantom at successive focal plane positions (Visualization 1). Out of plane object features appear increasingly blurred as a function of their axial separation from the focal plane position.
Fig. 8
Fig. 8 True z-axis positions of six different optical sections plotted against parallax measured in pixels. Linear extrapolation shows a nominal intercept at the origin as z-axis distances were measured with respect to the point X-ray source.
Fig. 9
Fig. 9 Cylindrical phantom mounted on the translation table in the X-ray inspection system. An aggregate of discrete objects arranged along a ~38 cm component of the z-axis were supported by polystyrene foam.
Fig. 10
Fig. 10 Three optical sections of the cylindrical phantom: (left, nearest the source) a plastic Petri dish containing a disc of soap and a paperclip; (middle, around midway between the source/detector) elliptical cross-section of a plastic marker pen and the circular cross-section of the pressurised canister within a medical inhaler; (right, nearest the detector) printed circuit board (PCB) from a wristwatch. In addition, two fine gauge metal wires run the full length of the phantom. The wires can be observed as a twisted pair leading from a circular metal contact (source side) at the centre of the soap, and as two dots near the circular cross section of the pressurised canister, and finally in the rightmost image connecting to the PCB. The full series of raw optical sections at successive focal plane positions can be seen in (Visualization 2).

Tables (1)

Tables Icon

Table 1 Linear distances highlighted by the arrows in Fig. 7 are tabulated together with their corresponding true, and calculated values via Eq. (4).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

B v,x,y = A v ( x,y ) x{ 1...N }, y{ 1...M }
D x,y,v = C ( x,y ) v v { 1... 2π / Δγ }
D x,y,v = B v,x,y
Z= ( P r P r ) 2tanϕ .
S=Ztanϕ.
T x,y = 1 V v=0 V1 D j,k,v
j=f[ x, Ztanϕcos( vΔγ ) δx ]
k=f[ y, Ztanϕsin( vΔγ ) δy ].
δZ= δp 2tanϕ

Metrics