Abstract

An open nanostructure consisting of a periodic chain of subwavelength-nanoparticles for compressing and routing light beyond the diffraction limit is proposed. The open nanostructure is ultrathin and compact, with a size much smaller than the wavelength of light. We demonstrate that our ultrathin open nanostructure provides functions that can route and manipulate light at the subwavelength scale and can also sharply bend and split light beams below the diffraction limit while exhibiting broadband, incident-angle-tolerant, and robust against disorder. A physical picture based on all-angle self-collimation is presented to understand the manipulation of light using the ultrathin open nanostructure. Experimental and numerical observations validate our findings. This approach provides great flexibility in the design of nanophotonic devices for routing and manipulating light beyond the diffraction limit.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

15 December 2016: A correction was made to Fig. 1.

References

  • View by:
  • |
  • |
  • |

  1. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [Crossref]
  2. G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
    [Crossref]
  3. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9(12), 4228–4233 (2009).
    [Crossref] [PubMed]
  4. K. H. Fung, R. C. Tang, and C. T. Chan, “Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain,” Opt. Lett. 36(12), 2206–2208 (2011).
    [Crossref] [PubMed]
  5. J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
    [Crossref]
  6. R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
    [Crossref]
  7. R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
    [Crossref]
  8. K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
    [Crossref]
  9. L. Zhang, Q. Zhan, J. Zhang, and Y. Cui, “Diffraction inhibition in two-dimensional photonic crystals,” Opt. Lett. 36(5), 651–653 (2011).
    [Crossref] [PubMed]
  10. H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
    [Crossref]
  11. A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
    [Crossref] [PubMed]
  12. V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
    [Crossref]
  13. P. Zhang, N. K. Efremidis, A. Miller, Y. Hu, and Z. Chen, “Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices,” Opt. Lett. 35(19), 3252–3254 (2010).
    [Crossref] [PubMed]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  15. M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).
  16. W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
    [Crossref]

2015 (1)

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

2014 (3)

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

2013 (2)

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

2012 (2)

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

2011 (2)

2010 (2)

V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
[Crossref]

P. Zhang, N. K. Efremidis, A. Miller, Y. Hu, and Z. Chen, “Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices,” Opt. Lett. 35(19), 3252–3254 (2010).
[Crossref] [PubMed]

2009 (2)

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9(12), 4228–4233 (2009).
[Crossref] [PubMed]

2006 (1)

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Abolmaali, F.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Allen, K. W.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Astratov, V. N.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Belov, P. A.

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

Chan, C. T.

Chen, Z.

Chui, S. T.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Cui, Y.

Darafsheh, A.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Dreisow, F.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Efremidis, N. K.

Fan, X.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Filonov, D. S.

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

Fung, K. H.

Gan, F.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Heinrich, M.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Hu, Y.

Huang, H.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

Jadidi, M. M.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Jiang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Kapitanova, P. V.

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

Kartashov, Y. V.

V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
[Crossref]

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kivshar, Y. S.

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9(12), 4228–4233 (2009).
[Crossref] [PubMed]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Kou, X.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Krasnok, A. E.

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

Kumar, G.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Lederer, F.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Li, H.

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Li, M.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

Li, S.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Li, W.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Li, Y.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

Limberopoulos, N. I.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Lin, X.

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Lin, Z.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Liu, S.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Liu, Z.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Lobanov, V. E.

V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
[Crossref]

Lu, Q.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Lupu, A.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Miller, A.

Miroshnichenko, A. E.

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

Mojaverian, N.

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

Murphy, T. E.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Nolte, S.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Pertsch, T.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Qiu, C.

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Requicha, A. A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Savelev, R. S.

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

Shen, J.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Sheng, Z.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Slobozhanyuk, A. P.

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

Szameit, A.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Tang, R. C.

Torner, L.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Tünnermann, A.

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Vysloukh, V. A.

V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
[Crossref]

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Wang, J.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

Wang, X.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Wu, A.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Xiao, J.Q.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Zhan, Q.

Zhang, H.

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, P.

Zhang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Zou, S.

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Appl. Phys. Lett. (3)

R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Bending of electromagnetic waves in all-dielectric particle array waveguides,” Appl. Phys. Lett. 105(18), 181116 (2014).
[Crossref]

K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, and V. N. Astratov, “Microsphere-chain waveguides: focusing and transport properties,” Appl. Phys. Lett. 105(2), 021112 (2014).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

IEEE Photonics J. (2)

M. Li, W. Li, H. Huang, J. Wang, Y. Li, A. Wu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “All-Angle quasi-self-collimation effect in a rod-type silicon photonic crystal,” IEEE Photonics J. 7, 1–8 (2015).

H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, “Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods,” IEEE Photonics J. 5(2), 2201306 (2013).
[Crossref]

Nano Lett. (1)

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9(12), 4228–4233 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010).
[Crossref]

Phys. Rev. B (2)

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89(3), 035435 (2014).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009).
[Crossref] [PubMed]

Plasmonics (1)

J. Shen, S. Liu, H. Zhang, S. T. Chui, Z. Lin, X. Fan, X. Kou, Q. Lu, and J.Q. Xiao, “Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a-d) The EFCs of photonic crystals with β = 1, 2, 3 and 6, respectively. The EFCs are calculated with plane wave expansion method. The insets are the corresponding PCs. (e-h) The E field intensity distribution when a point light source is used to excite the photonic crystals when β = 1, 2, 3 and 6. The TM (Ey polarized) point source is placed just close to the first rod on the left. The refractive indices of the rod is 3.5. The radius of the rods is r = 160 nm and the separation of the nearest rods is a = 400nm. For (h), the propagation loss is 10.7 dB/mm. (i) The dispersion relation of a single array of nanorods. The normalized frequency 0.258 corresponds to wavelength 1.55μm. The two bands also indicate a broadband characteristic which covers a wavelength range larger than 0.7μm.

Fig. 2
Fig. 2

The E field distribution of a self-collimated beam in (a) a photonic crystal (with β = 3) and (b) the corresponding single nanorod chain. (c) The side-view SEM image for the fabricated single nanorod chain. (d) The ray trace of the propagation light in the nanorod chain. The trace is captured with an infrared camera set above the chain.

Fig. 3
Fig. 3

FDTD simulations for propagation of light beams at wavelength λ = 1.55 µm with large incident angles: (a) 45° incidence; (b) 75° incidence. The zigzag distribution is due to the spinning-and-coupling propagation with oblique incident light for the 2nd band mode. (c) The normalized coupling efficiency to the incident angle. (d),(e) The ray trace of the light beam captured by an infrared camera.

Fig. 4
Fig. 4

Ray trace of the electromagnetic energy along the nanoparticle chain. (a) Ray trace along the chain when positional disorder is introduced with a deviation of 160 nm from the chain. (b), (c) and (d) Ray traces along the nanorod chain when rods are introduced with a radius of 240nm, 100 nm and 0, respectively. (e)-(h) The corresponding ray traces in the nanorod chains. (i)-(j) Transmission spectrum to position shift (left inset) and radius of the defect (right inset).

Fig. 5
Fig. 5

(a) The ray trace of the bending of light with the bent nanoparticle chain. (b) The ray trace of the splitter formed by the nanoparticle chain becomes two chains. (c) The letters “CAS” are formed by a nanorod chain that includes the transporting, splitting, bending, and combining functionalities.

Metrics