Abstract

We use a 3D printer to fabricate rectangular dielectric single mode waveguides for 120 GHz. The rectangular waveguides consisting of polystyrene showed an attenuation of 6.3 dB/m, which is low enough for short devices. We also characterize 3D printed Y-splitters and a 1x3-splitter based on multimode interference. Further, we construct and measure a variable planar waveguide coupler which can be used as a 3-dB coupler, a cross-coupler and no coupler at all.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz plasmonic waveguides created via 3D printing

Shashank Pandey, Barun Gupta, and Ajay Nahata
Opt. Express 21(21) 24422-24430 (2013)

Metallic and 3D-printed dielectric helical terahertz waveguides

Dominik Walter Vogt, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 23(26) 33359-33369 (2015)

3D printed low-loss THz waveguide based on Kagome photonic crystal structure

Jing Yang, Jiayu Zhao, Cheng Gong, Haolin Tian, Lu Sun, Ping Chen, Lie Lin, and Weiwei Liu
Opt. Express 24(20) 22454-22460 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
    [Crossref]
  4. R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).
  5. R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
    [Crossref]
  6. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
    [Crossref]
  7. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
    [Crossref]
  8. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
    [Crossref] [PubMed]
  9. T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
    [Crossref] [PubMed]
  10. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  11. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
    [Crossref]
  12. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
    [Crossref] [PubMed]
  13. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
    [Crossref] [PubMed]
  14. A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
    [Crossref]
  15. B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
    [Crossref]
  16. J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).
  17. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
    [Crossref] [PubMed]
  18. S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
    [Crossref]
  19. C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).
  20. E. G. Geterud, P. Bergmark, and J. Yang, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1812–1815.
  21. J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
    [Crossref]
  22. S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
    [Crossref] [PubMed]
  23. A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
    [Crossref]
  24. W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Opt. Lett. 41(8), 1748–1751 (2016).
    [Crossref] [PubMed]
  25. N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
    [Crossref] [PubMed]
  26. A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).
  27. S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
    [Crossref]
  28. S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
    [Crossref]
  29. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer, 2009).
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  31. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
    [Crossref]
  32. L. B. Soldano, Multimode Interference Couplers Design and Applications (Delft University, 1994).
  33. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  34. M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
    [Crossref]

2016 (4)

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Opt. Lett. 41(8), 1748–1751 (2016).
[Crossref] [PubMed]

2015 (2)

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

2014 (2)

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
[Crossref] [PubMed]

2013 (4)

S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
[Crossref] [PubMed]

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
[Crossref]

2012 (1)

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

2011 (6)

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[Crossref] [PubMed]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

2009 (1)

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

2008 (2)

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

2002 (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

1997 (1)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

1979 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Abbott, D.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

Afshar V, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

Al-Naib, I. A. I.

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Anthony, J.

Argyros, A. A

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Atakaramians, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

Badard, C.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Balzer, J. C.

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Bang, O.

Barbosa, C. L

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Belot, D.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Bergmark, P.

E. G. Geterud, P. Bergmark, and J. Yang, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1812–1815.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bisognin, A.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Bjarnason, J. E.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

Born, N.

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

Brandhorst, K.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Brown, E. R.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

Busch, S. F.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Busson, P.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Calascibetta, P.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Carnahan, M. A.

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

Chee, K. L.

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Chemla, D. S.

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

Constable, E.

A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cordeiro, C. M. B

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Corre, C.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Costa, J. R.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

CruzI, A. L. S

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

Czerwinska, E.

Dabrowski, R.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Fedor, A. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

Fernandes, C. A.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Ferrando, V.

Ferrero, F.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Fey, M.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Fischer, B.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Fischer, B. M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Franco, M. A. R

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Furlan, W. D.

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Garbat, K.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Gente, R.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Geterud, E. G.

E. G. Geterud, P. Bergmark, and J. Yang, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1812–1815.

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

Gianesello, F.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Gloria, D.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Grunenberg, J.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Gupta, B.

Güttler, B.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Hägele, D.

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

Helm, H.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Hirschmann, C. B.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jacob, M.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Jansen, C.

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

Jepsen, P. U.

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jördens, C.

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[Crossref] [PubMed]

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Kaindl, R. A.

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Koch, M.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[Crossref] [PubMed]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Korter, T. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

Kurner, T.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Leonhardt, R.

Lewis, R. A.

A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Liu, J.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
[Crossref]

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).

Luxey, C.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Mendis, R.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
[Crossref]

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).

Mikulicz, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Mittleman, D. M.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
[Crossref]

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

Monro, T. M.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

Monsoriu, J. A.

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Nahata, A.

Nielsen, K.

Niemann, H.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Nuss, M. C.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Pandey, S.

Peik, S.

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Piesiewicz, R.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Pilard, R.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Plew, P.

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

Plochocka, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Poulain, A.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Probst, T.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Pupeza, I.

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Rasmussen, H. K.

Reuter, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Riviere, J.-M.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rutz, F.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Schäfer, F.

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Scheller, M.

Scherger, B.

Schneider, L. M.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Schoebel, J.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Schumann, S.

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

Serrao, V

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Soltani, A.

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

Squires, A. D.

A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Stübling, E. M.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Szustakowski, M.

Tang, X

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Titz, D.

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Uhd Jepsen, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Vieweg, N.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Walther, M.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Weidenbach, M.

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

Wenke, G.

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

Wiesauer, K.

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[Crossref] [PubMed]

Wilk, R.

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Yang, J.

E. G. Geterud, P. Bergmark, and J. Yang, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1812–1815.

Yudasari, N.

Zagrajek, P.

Adv. Opt. Photonics (1)

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169 (2013).
[Crossref]

APL Mater. (1)

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater. 1(1), 012107 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett. 98, 128–130 (2011).

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71(1), 16 (1997).
[Crossref]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90(6), 61908 (2007).
[Crossref]

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103(3), 031104 (2013).
[Crossref]

Biopolymers (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

ChemPhysChem (1)

T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, and J. Grunenberg, “Probing noncovalent interactions in biomolecular crystals with terahertz spectroscopy,” ChemPhysChem 9(4), 544–547 (2008).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating,” IEEE Trans. Terahertz Sci. Technol. 2(5), 556–561 (2012).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

J. Infrared Millim. Terahertz Waves (6)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, “THz ATR spectroscopy for inline monitoring of highly absorbing liquids,” J. Infrared Millim. Terahertz Waves 37(10), 1001–1006 (2016).
[Crossref]

C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Terahertz Waves 31, 214–220 (2010).

S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz Optics 3D Printed with TOPAS,” J. Infrared Millim. Terahertz Waves 37(4), 303–307 (2016).
[Crossref]

J. Microwaves. Optoelectron. Electromagn. Appl. (1)

A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, and X Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Phys. Rev. B (1)

R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, “Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases,” Phys. Rev. B 79(4), 45320 (2009).
[Crossref]

Other (5)

L. B. Soldano, Multimode Interference Couplers Design and Applications (Delft University, 1994).

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer, 2009).

A. Bisognin, D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, “3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (IEEE, 2014), pp. 1–4.
[Crossref]

E. G. Geterud, P. Bergmark, and J. Yang, “Lightweight waveguide and antenna components using plating on plastics,” in 2013 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1812–1815.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic overview over the printed waveguides. a) S-shaped waveguide with a length of 506 mm for propagation loss measurement (due to the limited size of the 3D printer more bends were necessary to achieve the desired length), b) bending radius r = 30 mm and c) r = 4 mm for the measurement of bending losses with a length of 151 mm, d) and e) Y splitters with arm distances dx = 30 mm and dx = 8 mm, f) MMI 1x3 splitter, g) variable waveguide coupler. This is not an exhaustive list of the waveguides used in the experiments.

Fig. 2
Fig. 2

Top view of the experimental setup. Transceiver (upper left) and receiver have both attached a horn antenna. A waveguide is placed inside the horns (end-butt coupling) and mounted on a blade using one of the thin supports.

Fig. 3
Fig. 3

a) Transmission through a 90° bend in dependence of its bending radius and (inset) resultant loss per length for small radii. Experimental measurements (solid line), numerical simulations (dashed line) and theoretical calculation (dotted line) show similar behavior with deviations for small radii. b) Output intensity after propagating through waveguides of different length including a 90° bend with a 20 mm curvature radius (solid line). The attenuation could be calculated with the slope of a linear fit (dashed line) to be 6.3 dB/m.

Fig. 4
Fig. 4

a) Schematic of a 1x2 splitter. b), c) Output images of these splitters with split intensity of dx = 8 mm and 30 mm. In the image of the wide split a slight loss through the splitter's middle is visible. The cyan curve depicts the intensity measured along the white dashed line. d) Sum and imbalance of the output power of the two channels for different dx. The grey lines are linear regressions which show the trend of the measurements for the sum of the power (solid) and the imbalance (dashed).

Fig. 5
Fig. 5

a) Picture of the MMI 1x3 splitter with the simulated electric field Ey overlaid. The radiation interferes with itself causing three maxima at the end of the rectangle, where output waveguides are attached. b) A raster scanned image of the intensity measured at the output. Power was distributed with good balance and no radiation between the output waveguides was observed. The cyan curve depicts the intensity measured along the white dashed line.

Fig. 6
Fig. 6

a) Picture of the variable directional coupler. b) The intensity distribution at the output ports as a function of the distance between main (P2) and coupled line (P3). The frequency of the oscillation decreases with increasing distance. Dashed lines represent theoretical calculations for a waveguide directional coupler as in [33].

Metrics