Abstract

Determining optical constants of thin material films is important for characterizing their electronic excitations and for the design of optoelectronic devices. Spectroscopic ellipsometry techniques have emerged as the predominant approach for measuring thin-film optical constants. However, ellipsometry methods suffer from complications associated with highly model-dependent, multi-parameter spectral fitting procedures. Here, we present a model-blind, momentum-resolved reflectometry technique that yields accurate and precise optical constants, with quantifiable error estimates, even for film thicknesses less than 50 nm. These capabilities are demonstrated by interrogating an optical absorption resonance in films of the polymer P(NDI2OD-T2). We show that this approach produces exceptional agreement with UV-Vis-NIR absorption measurements, while simultaneously avoiding the need to construct complicated multi-oscillator spectral models. Finally, we use this procedure to resolve subtle differences in the out-of-plane optical properties of different film morphologies that were previously obscured in ellipsometry measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple determination of the optical constants of thin-film coating materials: a Rh sequel

D. E. Aspnes and H. G. Craighead
Appl. Opt. 25(8) 1299-1310 (1986)

Measurement of thickness distribution, optical constants, and roughness parameters of rough nonuniform ZnSe thin films

David Nečas, Ivan Ohlídal, Daniel Franta, Miloslav Ohlídal, Vladimír Čudek, and Jiří Vodák
Appl. Opt. 53(25) 5606-5614 (2014)

Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements

Chubing Peng, Rongguang Liang, J. Kevin Erwin, Warren Bletscher, Kenichi Nagata, and Masud Mansuripur
Appl. Opt. 40(28) 5088-5099 (2001)

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, “preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum,  2(4), 331–345 (1952).
    [Crossref]
  2. B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bulletin 25(08), 22–27 (2000).
    [Crossref]
  3. P. Siciliano, “Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method,” Sensors and Actuators B: Chemical 70(1–3), 153–164 (2000).
    [Crossref]
  4. C. R. Kagan and P. Andry, Thin-Film Transistors (CRC Press, 2003).
    [Crossref]
  5. K. N. Chopra and A. K. Maini, “Thin Films and Their Applications in Military and Civil Sectors,” Defence Research and Development Organization (2010).
  6. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
    [Crossref]
  7. C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
    [Crossref]
  8. C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
    [Crossref]
  9. F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
    [Crossref]
  10. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
    [Crossref]
  11. G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
    [Crossref]
  12. G. E. Jellison, “Generalized ellipsometry for materials characterization,” Thin Solid Films 450(1), 42–50 (2004).
    [Crossref]
  13. H. G. Tompkins, A User’s Guide to Ellipsometry (Dover Publications, 2006.)
  14. T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” Journal of Physics D: Applied Physics 32(9), R45 (1999).
    [Crossref]
  15. M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
    [Crossref]
  16. M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
    [Crossref]
  17. G. H. Bu-Abbud, “Parameter correlation and precision in multiple-angle ellipsometry,” Appl. Opt.,  20(17), 3020–3026 (1981).
    [Crossref] [PubMed]
  18. G. H. Bu-Abbud, “Variable Wavelength, Variable Angle Ellipsometry Including a Sensitivities Correlation Test,” Thin Solid Films 138(1), 27–41 (1986).
    [Crossref]
  19. G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290–291, 40–45 (1996).
    [Crossref]
  20. W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
    [Crossref]
  21. C. M. Ramsdale and N. C. Greenham, “Ellipsometric Determination of Anisotropic Optical Constants in Electroluminescent Conjugated Polymers,” Adv. Mater. 14(3), 212–215 (2002).
    [Crossref]
  22. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
    [Crossref] [PubMed]
  23. J. I. Cisneros, “Optical characterization of dielectric and semiconductor thin films by use of transmission data,” Appl. Opt. 37(22), 5262–5270 (1998).
    [Crossref]
  24. Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
    [Crossref]
  25. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” Journal of Physics D: Applied Physics 36(15), 1850 (2003).
    [Crossref]
  26. M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
    [Crossref] [PubMed]
  27. Metricon Corporation, “Model 2010/M Overview,” http://www.metricon.com
  28. W. Knoll, “Optical Characterization of Organic Thin Films and Interfaces with Evanescent Waves,” MRS Bulletin 16(07), 29–39 (1991).
    [Crossref]
  29. S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
    [Crossref]
  30. C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
    [Crossref] [PubMed]
  31. E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
    [Crossref]
  32. T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
    [Crossref] [PubMed]
  33. M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
    [Crossref] [PubMed]
  34. S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
    [Crossref]
  35. W. M. Prest and D. J. Luca, “The origin of the optical anisotropy of solvent cast polymeric films,” J. Appl. Phys. 50(10), 6067–6071 (1979).
    [Crossref]
  36. M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, 2816 (1992).
    [Crossref]
  37. L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
    [Crossref]
  38. O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
    [Crossref]
  39. C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
    [Crossref] [PubMed]
  40. R. R. Grote, S. J. Brown, J. B. Driscoll, R. M. Osgood, and J. A. Schuller, “Morphology-dependent light trapping in thin-film organic solar cells,” Opt. Express 21(S5), A847–A863 (2013).
    [Crossref] [PubMed]
  41. M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
    [Crossref]
  42. F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
    [Crossref] [PubMed]
  43. C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
    [Crossref]
  44. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
    [Crossref]
  45. A. L. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt 10(5), 054007 (2005).
    [Crossref] [PubMed]
  46. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
    [Crossref]
  47. K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
    [Crossref]
  48. J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
    [Crossref] [PubMed]
  49. J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
    [Crossref]
  50. B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,” Statistical Science 1(1), 54–75 (1986).
    [Crossref]
  51. SciPy.org, “SciPy v0.17.1 Reference Guide: scipy.optimize.least_squares,” http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
  52. M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
    [Crossref]
  53. M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
    [Crossref] [PubMed]

2016 (1)

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

2015 (4)

F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
[Crossref] [PubMed]

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
[Crossref]

2014 (3)

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

2013 (6)

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
[Crossref] [PubMed]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

R. R. Grote, S. J. Brown, J. B. Driscoll, R. M. Osgood, and J. A. Schuller, “Morphology-dependent light trapping in thin-film organic solar cells,” Opt. Express 21(S5), A847–A863 (2013).
[Crossref] [PubMed]

2012 (1)

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (2)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

2007 (1)

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

2005 (2)

M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
[Crossref]

A. L. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt 10(5), 054007 (2005).
[Crossref] [PubMed]

2004 (4)

O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
[Crossref]

G. E. Jellison, “Generalized ellipsometry for materials characterization,” Thin Solid Films 450(1), 42–50 (2004).
[Crossref]

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
[Crossref]

2003 (2)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” Journal of Physics D: Applied Physics 36(15), 1850 (2003).
[Crossref]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
[Crossref]

2002 (2)

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
[Crossref]

C. M. Ramsdale and N. C. Greenham, “Ellipsometric Determination of Anisotropic Optical Constants in Electroluminescent Conjugated Polymers,” Adv. Mater. 14(3), 212–215 (2002).
[Crossref]

2000 (4)

B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bulletin 25(08), 22–27 (2000).
[Crossref]

P. Siciliano, “Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method,” Sensors and Actuators B: Chemical 70(1–3), 153–164 (2000).
[Crossref]

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

1999 (2)

M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
[Crossref]

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” Journal of Physics D: Applied Physics 32(9), R45 (1999).
[Crossref]

1998 (2)

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[Crossref]

J. I. Cisneros, “Optical characterization of dielectric and semiconductor thin films by use of transmission data,” Appl. Opt. 37(22), 5262–5270 (1998).
[Crossref]

1996 (1)

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290–291, 40–45 (1996).
[Crossref]

1993 (1)

W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
[Crossref]

1992 (2)

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, 2816 (1992).
[Crossref]

1991 (1)

W. Knoll, “Optical Characterization of Organic Thin Films and Interfaces with Evanescent Waves,” MRS Bulletin 16(07), 29–39 (1991).
[Crossref]

1986 (2)

G. H. Bu-Abbud, “Variable Wavelength, Variable Angle Ellipsometry Including a Sensitivities Correlation Test,” Thin Solid Films 138(1), 27–41 (1986).
[Crossref]

B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,” Statistical Science 1(1), 54–75 (1986).
[Crossref]

1981 (1)

1979 (1)

W. M. Prest and D. J. Luca, “The origin of the optical anisotropy of solvent cast polymeric films,” J. Appl. Phys. 50(10), 6067–6071 (1979).
[Crossref]

1963 (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

1952 (1)

G. Hass, “preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum,  2(4), 331–345 (1952).
[Crossref]

Alonso, M. I.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

Ameziane, E. L.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

Amonoo, J. A.

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Andry, P.

C. R. Kagan and P. Andry, Thin-Film Transistors (CRC Press, 2003).
[Crossref]

Arwin, H.

Axelrod, D.

A. L. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt 10(5), 054007 (2005).
[Crossref] [PubMed]

Bai, S. J.

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

Barito, A.

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Bazan, G. C.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Bennouna, A.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

Bernardin, T.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Bogen, S.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Bouhelier, A.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Bradley, D. D. C.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
[Crossref]

Brambilla, L.

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

Branch, M.

M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
[Crossref]

Bräuer, A.

Bräuer, A. H.

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Brinkmann, M.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Brown, S. J.

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

R. R. Grote, S. J. Brown, J. B. Driscoll, R. M. Osgood, and J. A. Schuller, “Morphology-dependent light trapping in thin-film organic solar cells,” Opt. Express 21(S5), A847–A863 (2013).
[Crossref] [PubMed]

Bu-Abbud, G. H.

G. H. Bu-Abbud, “Variable Wavelength, Variable Angle Ellipsometry Including a Sensitivities Correlation Test,” Thin Solid Films 138(1), 27–41 (1986).
[Crossref]

G. H. Bu-Abbud, “Parameter correlation and precision in multiple-angle ellipsometry,” Appl. Opt.,  20(17), 3020–3026 (1981).
[Crossref] [PubMed]

Caironi, M.

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

Campoy-Quiles, M.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
[Crossref]

Castiglioni, C.

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

Caughman, J. B.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Chabinyc, M. L.

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Chahboun, N.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

Chang, A.

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

Chen, C. W.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Chen, C. Y.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Chen, Z.

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Chopra, K. N.

K. N. Chopra and A. K. Maini, “Thin Films and Their Applications in Military and Civil Sectors,” Defence Research and Development Organization (2010).

Cisneros, J. I.

Colas-des-Francs, G.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Coleman, T.

M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
[Crossref]

Collins, S. D.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Danz, N.

M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
[Crossref] [PubMed]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Debe, M. K.

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, 2816 (1992).
[Crossref]

Delongchamp, D. M.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Dereux, A.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Driscoll, J. B.

Efron, B.

B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,” Statistical Science 1(1), 54–75 (1986).
[Crossref]

Eres, G.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Espiau de Lamaestre, R.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Etchegoin, P. G.

M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
[Crossref]

Facchetti, A.

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Fazzi, D.

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

Fischer, D. A.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Flämmich, M.

M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
[Crossref] [PubMed]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Forrest, S. R.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
[Crossref]

Friedrich, M.

O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
[Crossref]

Gather, M. C.

M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
[Crossref] [PubMed]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Geohegan, D. B.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Ghosh, S.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
[Crossref]

Giussani, E.

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

Gonthier, E.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Gordan, O. D.

O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
[Crossref]

Green, P. F.

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Greenham, N. C.

C. M. Ramsdale and N. C. Greenham, “Ellipsometric Determination of Anisotropic Optical Constants in Electroluminescent Conjugated Polymers,” Adv. Mater. 14(3), 212–215 (2002).
[Crossref]

Grote, R. R.

Gurau, M. C.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Hashimoto, K.

F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
[Crossref] [PubMed]

Hass, G.

G. Hass, “preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum,  2(4), 331–345 (1952).
[Crossref]

Hassan, K.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

He, K.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Heeger, A. J.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Hsiao, S. Y.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Huang, Z. Y.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Hufnagel, M.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Inganäs, O.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
[Crossref]

Jackson, J.

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

Jain, M.

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

Jellison, G. E.

G. E. Jellison, “Generalized ellipsometry for materials characterization,” Thin Solid Films 450(1), 42–50 (2004).
[Crossref]

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290–291, 40–45 (1996).
[Crossref]

Jenkins, T. E.

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” Journal of Physics D: Applied Physics 32(9), R45 (1999).
[Crossref]

Jiang, M.

J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
[Crossref]

Johansen, K.

Johs, B.

W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
[Crossref]

Jonas, H.-W. K.

Kagan, C. R.

C. R. Kagan and P. Andry, Thin-Film Transistors (CRC Press, 2003).
[Crossref]

Kang, H. W.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Karaveli, S.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Knoll, W.

W. Knoll, “Optical Characterization of Organic Thin Films and Interfaces with Evanescent Waves,” MRS Bulletin 16(07), 29–39 (1991).
[Crossref]

Krämer, S.

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Kudaev, S.

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Kurvits, J. A.

J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
[Crossref]

Kymissis, I.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Laaziz, Y.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

Lewis, B. G.

B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bulletin 25(08), 22–27 (2000).
[Crossref]

Li, Y.

M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
[Crossref]

Lieb, M. A.

Lin, E. K.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Lin, H. W.

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

Love, J. A.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Lowndes, D. H.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Luca, D. J.

W. M. Prest and D. J. Luca, “The origin of the optical anisotropy of solvent cast polymeric films,” J. Appl. Phys. 50(10), 6067–6071 (1979).
[Crossref]

Ludwigs, S.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Maini, A. K.

K. N. Chopra and A. K. Maini, “Thin Films and Their Applications in Military and Civil Sectors,” Defence Research and Development Organization (2010).

Mattheyses, A. L.

A. L. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt 10(5), 054007 (2005).
[Crossref] [PubMed]

McCrackin, F. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

McGahan, W. A.

W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
[Crossref]

McNeill, C. R.

T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
[Crossref] [PubMed]

Meerholz, K.

M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
[Crossref] [PubMed]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Merkulov, V. I.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Michaelis, D.

M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, H.-W. K. Jonas, and K. Meerholz, “Dispersion-model-free determination of optical constants: application to materials for organic thin film devices,” Appl. Opt. 48(8), 1507–1513 (2009).
[Crossref] [PubMed]

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Mikhailovsky, A. A.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Nguyen, T.-Q.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Novotny, L.

O’Carroll, D. M.

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

Osgood, R. M.

Outzourhit, A.

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

Paine, D. C.

B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bulletin 25(08), 22–27 (2000).
[Crossref]

Passaglia, E.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

Petoukhoff, C. E.

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

Pettersson, L. A. A.

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
[Crossref]

Peumans, P.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
[Crossref]

Poelman, D.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” Journal of Physics D: Applied Physics 36(15), 1850 (2003).
[Crossref]

Poksinski, M.

Prest, W. M.

W. M. Prest and D. J. Luca, “The origin of the optical anisotropy of solvent cast polymeric films,” J. Appl. Phys. 50(10), 6067–6071 (1979).
[Crossref]

Puretzky, A. A.

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

Ramabadran, U.

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

Ramsdale, C. M.

C. M. Ramsdale and N. C. Greenham, “Ellipsometric Determination of Anisotropic Optical Constants in Electroluminescent Conjugated Polymers,” Adv. Mater. 14(3), 212–215 (2002).
[Crossref]

Richter, L. J.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Sambasivan, S.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Schiros, T.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Schlitz, R. A.

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

Schuettfort, T.

T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
[Crossref] [PubMed]

Schuller, J. A.

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

R. R. Grote, S. J. Brown, J. B. Driscoll, R. M. Osgood, and J. A. Schuller, “Morphology-dependent light trapping in thin-film organic solar cells,” Opt. Express 21(S5), A847–A863 (2013).
[Crossref] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

Shan, J.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Shen, Z.

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

Shtein, M.

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Siciliano, P.

P. Siciliano, “Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method,” Sensors and Actuators B: Chemical 70(1–3), 153–164 (2000).
[Crossref]

Smet, P. F.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” Journal of Physics D: Applied Physics 36(15), 1850 (2003).
[Crossref]

Sommer, M.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Spry, R. J.

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

Steinberg, H. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

Stromberg, R. R.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

Sykes, M. E.

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Synowicki, R. A.

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[Crossref]

Tajima, K.

F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
[Crossref] [PubMed]

Takacs, C. J.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

Thomsen, L.

T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
[Crossref] [PubMed]

Tibshirani, R.

B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,” Statistical Science 1(1), 54–75 (1986).
[Crossref]

Tompkins, H. G.

H. G. Tompkins, A User’s Guide to Ellipsometry (Dover Publications, 2006.)

Treat, N. D.

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Tremel, K.

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

Vogel, B. M.

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Wächter, C. A.

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Wang, F.

F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
[Crossref] [PubMed]

Weeber, J.-C.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Woollam, J. A.

W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
[Crossref]

Wynands, D.

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
[Crossref]

Yang, S.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Zahn, D. R. T.

O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
[Crossref]

Zavislan, J. M.

Zelmon, D. E.

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

Zia, R.

J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

ACS Nano (2)

C. J. Takacs, S. D. Collins, J. A. Love, A. A. Mikhailovsky, D. Wynands, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy,” ACS Nano 8(8), 8141–8151 (2014).
[Crossref] [PubMed]

M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, and M. Sommer, “Segregated versus Mixed Interchain Stacking in Highly Oriented Films of Naphthalene Diimide Bithiophene Copolymers,” ACS Nano 6(11), 10319–10326 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

M. E. Sykes, A. Barito, J. A. Amonoo, P. F. Green, and M. Shtein, “Broadband Plasmonic Photocurrent Enhancement in Planar Organic Photovoltaics Embedded in a Metallic Nanocavity,” Adv. Energy Mater. 4, 1301937 (2014).
[Crossref]

Adv. Funct. Mater. (1)

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced Ellipsometric Characterization of Conjugated Polymer Films,” Adv. Funct. Mater. 24(15), 2116–2134 (2014).
[Crossref]

Adv. Mater. (2)

F. Wang, K. Hashimoto, and K. Tajima, “Optical Anisotropy and Strong H-Aggregation of Poly(3-Alkylthiophene) in a Surface Monolayer,” Adv. Mater. 27(39), 6014–6020 (2015).
[Crossref] [PubMed]

C. M. Ramsdale and N. C. Greenham, “Ellipsometric Determination of Anisotropic Optical Constants in Electroluminescent Conjugated Polymers,” Adv. Mater. 14(3), 212–215 (2002).
[Crossref]

Appl. Opt. (4)

J. Am. Chem. Soc. (1)

T. Schuettfort, L. Thomsen, and C. R. McNeill, “Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer,” J. Am. Chem. Soc. 135(3), 1092–1101 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (2)

W. M. Prest and D. J. Luca, “The origin of the optical anisotropy of solvent cast polymeric films,” J. Appl. Phys. 50(10), 6067–6071 (1979).
[Crossref]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693 (2003).
[Crossref]

J. Biomed. Opt (1)

A. L. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt 10(5), 054007 (2005).
[Crossref] [PubMed]

J. Mater. Chem. A (1)

C. W. Chen, S. Y. Hsiao, C. Y. Chen, H. W. Kang, Z. Y. Huang, and H. W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A 3(17), 9152–9159 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photon. Energy (1)

C. E. Petoukhoff, Z. Shen, M. Jain, A. Chang, and D. M. O’Carroll, “Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review,” J. Photon. Energy 5(1), 057002 (2015).
[Crossref]

J. Polym. Sci. B Polym. Phys. (1)

S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, “Optical anisotropy of polymeric films measured by waveguide propagation mode determination,” J. Polym. Sci. B Polym. Phys. 30(13), 1507–1514 (1992).
[Crossref]

J. Res. Nat. Bur. Sec. A (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Sec. A 67, 363 (1963).
[Crossref]

Journal of Physics D: Applied Physics (2)

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” Journal of Physics D: Applied Physics 32(9), R45 (1999).
[Crossref]

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” Journal of Physics D: Applied Physics 36(15), 1850 (2003).
[Crossref]

Journal of the Optical Society of America A (1)

J. A. Kurvits, M. Jiang, and R. Zia, “Comparative analysis of imaging configurations and objectives for Fourier microscopy,” Journal of the Optical Society of America A 32(11), 2082 (2015).
[Crossref]

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films (1)

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, 2816 (1992).
[Crossref]

Langmuir (1)

M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, “Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies,” Langmuir 23(2), 834–842 (2007).
[Crossref] [PubMed]

Macromolecules (1)

E. Giussani, D. Fazzi, L. Brambilla, M. Caironi, and C. Castiglioni, “Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy,” Macromolecules,  46(7), 2658–2670 (2013).
[Crossref]

MRS Bulletin (2)

W. Knoll, “Optical Characterization of Organic Thin Films and Interfaces with Evanescent Waves,” MRS Bulletin 16(07), 29–39 (1991).
[Crossref]

B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bulletin 25(08), 22–27 (2000).
[Crossref]

Nano Letters (1)

C. J. Takacs, N. D. Treat, S. Krämer, Z. Chen, A. Facchetti, M. L. Chabinyc, and A. J. Heeger, “Remarkable Order of a High-Performance Polymer,” Nano Letters 13(6), 2522–2527 (2013).
[Crossref] [PubMed]

Nat Photon (1)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon,  2(4), 234–237 (2008).
[Crossref]

Nature Nanotechnology (1)

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nature Nanotechnology,  8(4), 271–276 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (2)

L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)—poly(4-styrenesulfonate),” Org. Electron. 3(3–4), 143–148 (2002).
[Crossref]

O. D. Gordan, M. Friedrich, and D. R. T. Zahn, “The anisotropic dielectric function for copper phthalocyanine thin films,” Org. Electron. 5(6), 291–297 (2004).
[Crossref]

Phys. Rev. B (3)

S. J. Brown, R. A. Schlitz, M. L. Chabinyc, and J. A. Schuller, “Morphology dependent optical anisotropies in the n-type polymer P(NDI2OD-T2),” Phys. Rev. B 94, 165105 (2016).
[Crossref]

M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley, “On the optical anisotropy of conjugated polymer thin films,” Phys. Rev. B 72, 045209 (2005).
[Crossref]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B,  87(19), 195428 (2013).
[Crossref]

Proc. SPIE (1)

C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, and K. Meerholz, “Intrinsic OLED emitter properties and their effect on device performance,” Proc. SPIE 6910, Light-Emitting Diodes: Research, Manufacturing, and Applications XII, 691006 (2008)
[Crossref]

Sensors and Actuators B: Chemical (1)

P. Siciliano, “Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method,” Sensors and Actuators B: Chemical 70(1–3), 153–164 (2000).
[Crossref]

SIAM J. Sci. Comput. (1)

M. Branch, T. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM J. Sci. Comput. 21(1), 1–23 (1999).
[Crossref]

Statistical Science (1)

B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,” Statistical Science 1(1), 54–75 (1986).
[Crossref]

Thin Solid Films (7)

Y. Laaziz, A. Bennouna, N. Chahboun, A. Outzourhit, and E. L. Ameziane, “Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements,” Thin Solid Films 372(1–2), 149–155 (2000).
[Crossref]

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[Crossref]

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377–378, 68–73 (2000).
[Crossref]

G. E. Jellison, “Generalized ellipsometry for materials characterization,” Thin Solid Films 450(1), 42–50 (2004).
[Crossref]

G. H. Bu-Abbud, “Variable Wavelength, Variable Angle Ellipsometry Including a Sensitivities Correlation Test,” Thin Solid Films 138(1), 27–41 (1986).
[Crossref]

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290–291, 40–45 (1996).
[Crossref]

W. A. McGahan, B. Johs, and J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234(1), 443–446 (1993).
[Crossref]

Vacuum (1)

G. Hass, “preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum,  2(4), 331–345 (1952).
[Crossref]

Other (5)

Metricon Corporation, “Model 2010/M Overview,” http://www.metricon.com

H. G. Tompkins, A User’s Guide to Ellipsometry (Dover Publications, 2006.)

C. R. Kagan and P. Andry, Thin-Film Transistors (CRC Press, 2003).
[Crossref]

K. N. Chopra and A. K. Maini, “Thin Films and Their Applications in Military and Civil Sectors,” Defence Research and Development Organization (2010).

SciPy.org, “SciPy v0.17.1 Reference Guide: scipy.optimize.least_squares,” http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) ‘Face-on’ and ‘edge-on’ morphologies assumed by P(NDI2OD-T2) for low-and high-temperature thermal annealing, respectively; (b) P(NDI2OD-T2) molecule; (c) polymer segment with associated transition dipole moment; (d) the macroscopic EM system representing the sample on substrate.

Fig. 2
Fig. 2

s-Polarized reflection measurements for bare quartz substrates (blue triangles) and film-on-substrate (red circles) at 700 nm for 46 nm (a) face-on and (b) edge-on films. Theoretical curves (solid lines) for single quartz-air interface (blue) and the two-interface quartz-film-air system with best-fit film index (red) are superimposed on the data. The edge-on film has a smaller absorption coefficient (Im[no]), manifested most evidently as higher reflectance at large momentum values (kk0). Best fit values for the real and imaginary parts of the ordinary index and associated 99% confidence values are displayed in the upper left hand corner of each plot.

Fig. 3
Fig. 3

[(a) and (b)] Variation of the real (red, left axis) and imaginary (blue, right axis) parts of the ordinary index for (a) face-on and (b) edge-on films. The curves in each plot show the expected lineshapes associated with an optical absorption resonance around λ=700 nm. 99% confidence intervals are included, but those for the imaginary parts lie within the data markers and are not visible. [(c) and (d)] Normal-incidence transmission spectra through the 46 nm film on fused-silica substrate for (c) face-on and (d) edge-on films. Red circles show the prediction using values determined from Rs measurements; Green triangles show the prediction using values determined from ellipsometry; Blue dashed lines show UV-Vis-NIR transmission measurement. In agreement with the molecular model, smaller IP absorption is visible in the edge-on film, attributed to the higher OP dipole strength. This subtlety is well-resolved by our reflectometry procedure, whereas ellipsometry incorrectly suggests a larger IP absorption for edge-on films.

Fig. 4
Fig. 4

(a) 2D map of the error FOM, S (Eqn. (1)), for real and imaginary components of the ordinary index of the face-on film as fit against Rs data at 700 nm. In order to reveal details in the neighborhood of the minimum, the vertical range is limited to 0.1≤��m(no)≤0.8 in this visualization. The specified fit bounds [1≤ℝe(no)≤2 and 0≤��m(no)≤1] cover index values for nearly all organic films. (b) Sensitivity of the reflection function, Rs, with respect to real (blue) and imaginary (red) components of the ordinary index, as a function of in-plane momentum, k. The curves are calculated at typical index values: ℝe(no)=1.5; ��m(no)=0.2. Rs shows significantly increased sensitivity to the fit parameters for in-plane momenta beyond the critical angle of TIR. This is especially so for ��m(no), and thus accurate estimates of film absorption benefit significantly from measurements in the region of TIR.

Fig. 5
Fig. 5

p-Polarized reflection measurements for bare quartz substrates (blue triangles) and film-on-substrate (red circles) at 700nm for 46 nm (a) face-on and (b) edge-on films. Theoretical curves (solid lines) for single quartz-air interface (blue) and the two-interface quartz-film-air system with best-fit film index (red) are superposed on the data. The enhanced OP absorption is apparent in the edge-on film, manifest as substantially lower reflectance at TIR. The inset highlights both data around the pseudo-Brewster angle. Best fit values and 99% confidence values are printed in each plot.

Fig. 6
Fig. 6

(a) The imaginary component of the extraordinary refractive index for face-on (red circles) and edge-on (blue triangles) films, determined via p-polarized reflection measurements. Though uncertainties are relatively large, the edge-on film exhibits a clear increase in OP absorption, relative to the face-on film. The wavelengths between face-on and edge-on films have been slightly offset to avoid overlapping error bars. (b) The real component of the extraordinary refractive index for face-on (red circles) and edge-on (blue triangles) films. 99% confidence bars are included in each plot.

Fig. 7
Fig. 7

[(a) and (b)] Reflected intensity for (a) p-polarized and (b) s-polarized incidence at 700 nm. [(c) and (d)] Efficiency-corrected and normalized data (i.e., reflectance, R) for (c) p-polarized and (d) s-polarized incidence at 700 nm. Blue triangles: bare quartz substrates. Red circles: quartz substrates with edge-on films.

Fig. 8
Fig. 8

Variable-angle spectroscopic ellipsometry measurements of Psi (blue, left axis) and Delta (red, right axis) for (a) face-on and (b) edge-on films of P(NDI2OD-T2). The constructed model necessary for a quality fit introduces 35 free parameters. Though the fits of Delta and Psi appear to be very good, the quality of the model remains unknown, and we find the resulting refractive index estimations to be flawed.

Fig. 9
Fig. 9

Spectroscopic ellipsometry results for the real (red, left axis) and imaginary (blue, right axis) parts of the (a,b) ordinary and (c,d) extraordinary refractive index for (a,c) face-on and (b,d) edge-on films. Contrary to UV-Vis transmission, angle-resolved photoluminescence, and our reflectometry measurements, the edge-on film shows higher IP absorption.

Fig. 10
Fig. 10

2D map of the error FOM, S (Eqn. (1) of main manuscript), for real and imaginary components of the ordinary index of edge-on films as fit against Rs data at 700 nm. In order to reveal details in the neighborhood of the minimum, the vertical range is limited to 0.1≤��m(no)≤0.8 in this visualization. A clear unique minimum exists, validating the use of the gradient-descent method.

Fig. 11
Fig. 11

[(a) and (b)] 2D maps of the error FOM, S (Eqn. (1) of main manuscript), for real and imaginary components of the extraordinary index of (a) face-on and (b) edge-on films as fit against Rp data at 700 nm. [(c) and (d)] The same maps as in (a) and (b), in which values greater than a maximum value (specified by color bars) have been oversaturated (gray). This serves to show fine details in the neighborhood of the minima.

Fig. 12
Fig. 12

(a) Sensitivity of the reflection function, Rp, with respect to real (blue) and imaginary (red) components of the extraordinary index, as a function of in-plane momentum. The curves are calculated at typical index values: ℝe(no)=1.5; ��m(no)=0.2; ℝe(ne)=1.5; ��m(ne)=0.05. The reflectance shows drastically increased sensitivity to the fit parameters for in-plane momenta beyond the critical angle of TIR. The inset demonstrates increased sensitivity of Rp with respect to the real part of the extraordinary index in films with greater out-of-plane absorption. (b) The correlation function, C (Eqn. 3) as a function of in-plane momentum, again assuming typical index values specified for (a). The behavior for k/k0>1 suggests substantial correlation between the real and imaginary components of the extraordinary index in the region of TIR.

Fig. 13
Fig. 13

Real (red, left axis) and imaginary (blue, right axis) components of the ordinary index for (a) face-on and (b) edge-on films. Values are determined from a single fit using the trust-region reflective algorithm, and 99% confidence intervals are determined here from the covariance matrix.

Fig. 14
Fig. 14

(a) Imaginary and (b) real components of the extraordinary index for (red) face-on and (blue) edge-on films. Values are determined from a single fit using the trust-region reflective algorithm, and 99% confidence intervals are determined here from the covariance matrix.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( e n , 𝕀 m n ) = Σ i [ y i R ( k , i ; e n , 𝕀 m n ) ] 2
c s , p ( k ) = R s , p ( k ) y Quartz ( k ) / v s , p .
C = | R p e ( n e ) R p 𝕀 m ( n e ) | .

Metrics