Abstract

We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging

Zdeněk Petrášek and Klaus Suhling
Opt. Express 18(24) 24888-24901 (2010)

On the application of a monolithic array for detecting intensity-correlated photons emitted by different source types

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon
Opt. Express 17(17) 15087-15103 (2009)

Architecture and applications of a high resolution gated SPAD image sensor

Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco Regazzoni, Claudio Bruschini, and Edoardo Charbon
Opt. Express 22(14) 17573-17589 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
    [Crossref]
  2. P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
    [Crossref] [PubMed]
  3. S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
    [Crossref]
  4. G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
    [Crossref]
  5. W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
    [Crossref]
  6. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
    [Crossref]
  7. P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
    [Crossref]
  8. M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
    [Crossref]
  9. P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
    [Crossref] [PubMed]
  10. A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841 (2016).
    [Crossref] [PubMed]
  11. L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
    [Crossref]
  12. J. J. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
    [Crossref]
  13. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
    [Crossref]
  14. M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
    [Crossref]
  15. L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
    [Crossref] [PubMed]
  16. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  17. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
    [Crossref] [PubMed]
  18. E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
    [Crossref]
  19. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [Crossref]
  20. M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
    [Crossref]
  21. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
    [Crossref] [PubMed]
  22. V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full field quantum correlations of spatially entangled photons,” Phys. Rev. Lett. 108(17), 173604 (2012).
    [Crossref] [PubMed]
  23. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
    [Crossref]
  24. M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
    [Crossref]
  25. S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
    [Crossref]
  26. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  27. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).
  28. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
    [Crossref] [PubMed]
  29. L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
    [Crossref]
  30. J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
    [Crossref] [PubMed]
  31. B. M. Jost, A. V. Sergienko, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera,”, Opt. Express 3(2), 81–88 (1998).
    [Crossref] [PubMed]
  32. S. S. R. Oemrawsingh, W. J. van Drunen, E. R. Eliel, and J. P. Woerdman, “Two-dimensional wave-vector correlations in spontaneous parametric down conversion explored with an intensified CCD camera,” J. Opt. Soc. Am. B 19(10), 2391 (2002).
    [Crossref]
  33. H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
    [Crossref]
  34. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
    [Crossref] [PubMed]
  35. R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
    [Crossref]
  36. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref] [PubMed]
  37. F. Just, M. Filipenko, A. Cavanna, T. Michel, T. Gleixner, M. Taheri, J. Vallerga, M. Campbell, T. Tick, G. Anton, M. V. Chekhova, and G. Leuchs, “Detection of non-classical space-time correlations with a novel type of single-photon camera,” Opt. Express 22(14), 17561–17572 (2014).
    [Crossref] [PubMed]
  38. D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
    [Crossref]
  39. S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
    [Crossref] [PubMed]
  40. N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
    [Crossref]
  41. R. Lussana, F. Villa, A. DallaMora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
    [Crossref] [PubMed]
  42. S. Jahromi, J. Jansson, and J. Kostamovaara, “Solid-state 3D imaging using a 1nJ/100ps laser diode transmitter and a single photon receiver matrix,” Opt. Express 24(19), 21619–21632 (2016).
    [Crossref] [PubMed]
  43. N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
    [Crossref]
  44. L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
    [Crossref]
  45. S. Emanueli and A. Arie, “Temperature dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42(33), 6661–6665 (2003).
    [Crossref] [PubMed]

2016 (4)

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841 (2016).
[Crossref] [PubMed]

S. Jahromi, J. Jansson, and J. Kostamovaara, “Solid-state 3D imaging using a 1nJ/100ps laser diode transmitter and a single photon receiver matrix,” Opt. Express 24(19), 21619–21632 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
[Crossref] [PubMed]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

F. Just, M. Filipenko, A. Cavanna, T. Michel, T. Gleixner, M. Taheri, J. Vallerga, M. Campbell, T. Tick, G. Anton, M. V. Chekhova, and G. Leuchs, “Detection of non-classical space-time correlations with a novel type of single-photon camera,” Opt. Express 22(14), 17561–17572 (2014).
[Crossref] [PubMed]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
[Crossref] [PubMed]

2013 (3)

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

2012 (4)

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

J. J. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full field quantum correlations of spatially entangled photons,” Phys. Rev. Lett. 108(17), 173604 (2012).
[Crossref] [PubMed]

2011 (2)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

2010 (2)

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

2009 (5)

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
[Crossref]

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

2008 (1)

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

2007 (1)

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

2005 (2)

M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
[Crossref]

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

2004 (2)

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

2003 (2)

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

S. Emanueli and A. Arie, “Temperature dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42(33), 6661–6665 (2003).
[Crossref] [PubMed]

2002 (4)

S. S. R. Oemrawsingh, W. J. van Drunen, E. R. Eliel, and J. P. Woerdman, “Two-dimensional wave-vector correlations in spontaneous parametric down conversion explored with an intensified CCD camera,” J. Opt. Soc. Am. B 19(10), 2391 (2002).
[Crossref]

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1998 (1)

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

1994 (1)

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Abouraddy, A. F.

Agnew, M.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

AguirreGómez, J. G.

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

Almeida, M. P.

M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
[Crossref]

Ameer-Beg, S.

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Anton, G.

Arie, A.

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

Avella, A.

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Barbosa, G. A.

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

Bartlett, S. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Bell, J. E. C.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

Beretta, G. B.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Blanchet, J.-L.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Boiko, D. L.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

J. J. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

Braga, L. H. C.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Brambilla, E.

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
[Crossref]

Brauer, N.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Brida, G.

Bruschini, C.

Buller, G. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Burri, S.

Cagliero, E.

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

Calder, N.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Campbell, M.

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Cavanna, A.

Charbon, E.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
[Crossref] [PubMed]

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Chekhova, M. V.

Contini, D.

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

DallaMora, A.

Dalton, R. B.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

de Matos Filho, R. L.

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

Degiovanni, I. P.

Devaux, F.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
[Crossref] [PubMed]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Di Lorenzo Pires, H.

H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
[Crossref]

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Dutton, N. A. W.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Edgar, M. P.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

Eliel, E. R.

Emanueli, S.

Ether, D. S.

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

Falzetta, G.

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

Fickler, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Filipenko, M.

Forbes, A.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

Furfaro, L.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Gasparini, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Gatti, A.

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
[Crossref]

Genovese, M.

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841 (2016).
[Crossref] [PubMed]

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

Gilchrist, A.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Gleixner, T.

Gnecchi, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Gramegna, M.

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

Grant, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Grant, L. A.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Gunther, N. J.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Gyongy, I.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Harvey, M. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Henderson, R.

Henderson, R. K.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

Huber, M.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

Izdebski, F.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

Jahromi, S.

Jansson, J.

Jost, B. M.

Just, F.

Kostamovaara, J.

Krenn, M.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Krstajic, N.

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Langford, N. K.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Lantz, E.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
[Crossref] [PubMed]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Lapkiewicz, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Leach, J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

Leuchs, G.

F. Just, M. Filipenko, A. Cavanna, T. Michel, T. Gleixner, M. Taheri, J. Vallerga, M. Campbell, T. Tick, G. Anton, M. V. Chekhova, and G. Leuchs, “Detection of non-classical space-time correlations with a novel type of single-photon camera,” Opt. Express 22(14), 17561–17572 (2014).
[Crossref] [PubMed]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Levitt, J.

Lima, G.

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

Löffler, W.

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full field quantum correlations of spatially entangled photons,” Phys. Rev. Lett. 108(17), 173604 (2012).
[Crossref] [PubMed]

Lugiato, L. A.

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
[Crossref]

Lundeen, J. S.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

Lussana, R.

Machado da Silva, J. C.

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Marrucci, L.

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

Maruyama, Y.

Massari, N.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

McLaren, M.

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

Michalet, X.

Michel, T.

Monken, C.

H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
[Crossref]

Monken, C. H.

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

Moreau, P.-A.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
[Crossref] [PubMed]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Mougin-Sisini, J.

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

Nagali, E.

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

Neves, L.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

Niclass, C.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

O’Brien, J. L.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Oemrawsingh, S. S. R.

Padgett, M. J.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Pádua, S.

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Peeters, W. H.

W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
[Crossref]

Pellegrini, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Perenzoni, M.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

Poland, S.

Pryde, G. J.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Rae, B. R.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

Ramelow, S.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Regazzoni, F.

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Renema, J. J.

W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
[Crossref]

Ribeiro, P. H. S.

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

Ribeiro Souto, P. H.

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

Ruo-Berchera, I.

Saavedra, C.

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

Salakhutdinov, V. D.

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full field quantum correlations of spatially entangled photons,” Phys. Rev. Lett. 108(17), 173604 (2012).
[Crossref] [PubMed]

Saleh, B. E. A.

Sansoni, L.

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

Santamato, E.

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

Sciarrino, F.

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

Sergienko, A. V.

B. M. Jost, A. V. Sergienko, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera,”, Opt. Express 3(2), 81–88 (1998).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

Sergio, M.

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

Shapiro, J. J.

J. J. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

Souto, P. H.

M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
[Crossref]

Stef Roux, F.

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

Stoppa, D.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

Taheri, M.

Tasca, D. S.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

Teich, M. C.

TerraCunha, M. O.

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

Tick, T.

Tosi, A.

Vallerga, J.

van Drunen, W. J.

van Exter, M.

H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
[Crossref]

van Exter, M. P.

W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
[Crossref]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Villa, F.

Walborn, S. P.

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
[Crossref]

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

Walker, R.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

Walmsley, I. A.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

Warburton, R. E.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

White, A. G.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

Woerdman, J. P.

Zagury, N.

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

Zappa, F.

Zeilinger, A.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

Appl. Opt. (1)

IEEE J. Solid-St. Circ. (1)

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8×16 SiPM array for PET applications with per-pixel TDC’s and real-time energy output,” IEEE J. Solid-St. Circ. 49(1), 301–313 (2013).
[Crossref]

IEEE T. Electron Dev. (1)

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE T. Electron Dev. 63(1), 189–196 (2016).
[Crossref]

J. Mod. Optics (1)

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of Klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optics 61(7), 547–551 (2014).
[Crossref]

J. Opt. (1)

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

J. Opt. B - Quantum S. O. (1)

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B - Quantum S. O. 4(3), 176–183 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device,” J. Phys. B: At. Mol. Opt. Phys. 42(11), 114011 (2009).
[Crossref]

Nat. Comm. (1)

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Comm. 3, 984 (2012).
[Crossref]

Nat. Commun. (1)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, “A quantum imager for intensity correlated photons,” New J. Phys. 11(1), 013001 (2009).
[Crossref]

New. J. Phys. (1)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New. J. Phys. 15(7), 073032 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

P. Natl. Acad. Sci. USA (1)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” P. Natl. Acad. Sci. USA 111(17), 6243–6247 (2014).
[Crossref]

Phys. Rep. (1)

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Ribeiro Souto, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4), 87–139 (2010).
[Crossref]

Phys. Rev. A (10)

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence,” Phys. Rev. A 49(5), 4176–4179 (1994).
[Crossref] [PubMed]

S. P. Walborn, M. O. TerraCunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002).
[Crossref]

G. Brida, E. Cagliero, G. Falzetta, M. Genovese, and M. Gramegna, “Biphoton double-slit experiment,” Phys. Rev. A 68(3), 033803 (2003).
[Crossref]

W. H. Peeters, J. J. Renema, and M. P. van Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79(4), 043817 (2009).
[Crossref]

P.-A. Moreau, J. Mougin-Sisini, F. Devaux, and E. Lantz, “Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full field images of spontaneous parametric down-conversion,” Phys. Rev. A 86(1), 010101 (2012).
[Crossref]

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81(5), 052317 (2010).
[Crossref]

M. P. Almeida, S. P. Walborn, and P. H. Souto, “Experimental investigation of quantum key distribution with position and momentum of photon pairs,” Phys. Rev. A 72(7), 022313 (2005).
[Crossref]

S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury, “Quantum teleportation of the angular spectrum of a single photon-field,” Phys. Rev. A 76(6), 033801 (2007).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84(6), 062101 (2011).
[Crossref]

H. Di Lorenzo Pires, C. Monken, and M. van Exter, “Direct measurement of transverse-mode entanglement in two-photon states,” Phys. Rev. A 80(2), 022307 (2009).
[Crossref]

Phys. Rev. Lett. (9)

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise correlations of spatial fluctuations in the photon-counting regime,”, Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).
[Crossref] [PubMed]

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full field quantum correlations of spatially entangled photons,” Phys. Rev. Lett. 108(17), 173604 (2012).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. Lett. 52(5), R3429 (1995).

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

L. Neves, G. Lima, J. G. AguirreGómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94(10), 100501 (2005).
[Crossref] [PubMed]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-Podolsky-Rosen paradox in twin images,” Phys. Rev. Lett. 113(16), 160401 (2014).
[Crossref] [PubMed]

Quantum Inf. Process. (1)

J. J. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

Rev. Mod. Phys. (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquim: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Sci. Rep. (1)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Architecture of the SPADnet-I sensor. It includes an 8 × 16 array of pixels, each including 720 SPADs, photon counters and TDCs. A tree of adders is distributed across the array to calculate the number of triggering SPADs at 100 MHz. Additional logic units are present at the periphery of the array for event discrimination and data readout. Operations are synchronous with a global clock.

Fig. 2
Fig. 2

Timing diagram of the SPADnet-I sensor operation with example data, adapted to quantum optics experiments, looking for coincident photons (blue arrows in a). During standard operation (clock bins #1-#3) each pixel generates photon counts (not shown) and timestamps (c) at the clock rate, while the sensor streams out the number of photons globally detected (b, light blue area). When the external trigger is provided (vertical red arrows) each pixel retains the photon time-stamps (c, purple areas), the stream of global counts is interrupted and data are read out of the chip (c, light blue area). Then the process starts over again. The sensor is read out at the maximum frame rate limited by readout time.

Fig. 3
Fig. 3

Experimental setup. CW continuous wave pump laser at 405 nm, NLC non-linear crystal movable in z-direction, L1 lens (f1 = 40 mm), LF longpass filter to reject the residual of the pump, BF bandpass filter (810 nm, 10 nm FWHM), L2 lens (f2 = 300 mm), BS 50:50 plate beam splitter, M mirror (the distance between BS and M is 2 cm), OT optically opaque tube to reduce the effect of stray light, SPADnet-I sensor. The telescope (L1,L2) provides a magnification of m = 8 from the object plane (OP) to the imaging plane (IP). The inset shows the arrangement of the two beams on the sensor surface. The magnified beamwaist is w S P D C 2 mm and covers about 3 pixels in radius.

Fig. 4
Fig. 4

Single photon counting events. Panel (a) depicts the sensor pixel array with the number of detection events per pixel. A total of 3.07 M events are registered in 5.4 M frames. The intensity of the left hand beam is slightly degraded due to the non-perfect 50:50 behaviour of the beam splitter. Panel (b) shows the distribution of the total number of detection events in a frame.

Fig. 5
Fig. 5

Histogram of the time difference Δt between all events within every frame. Photon pair detections are expected at Δt = 0 TDC units. The raw data (dashed line) shows a linear background of accidental events which are also present in a coincidence window around Δt = 0 TDC units. These accidental events are removed by linear fitting and extrapolation (solid line). 1 TDC unit ≈ 65 ps.

Fig. 6
Fig. 6

Histogram of the time difference Δt between all events within each frame. One beam incident on the sensor is delayed by 300 mm and photon pair detections are expected at Δt = 15 TDC units. Coincidences between all pixels are considered in the dashed line where the crosstalk events at Δt = 0 TDC units rise to 4 × 104 events. In order to suppress these, only coincidences between the left half with the right half of the sensor array are taken into account in the solid line. Accidentals are removed in both graphs as shown in Fig. 5 and 54 M frames are evaluated.

Fig. 7
Fig. 7

Second-order correlation function G(2)(Δϱ%, 0) of coincidence events in measurement (a) and theory (b). The NLC temperature is 25°C, a coincidence window of 9 TDC units is used and accidentals are removed.

Fig. 8
Fig. 8

Second-order correlation function G(2)(Δϱ%, 0) of events with Δt = 13 ± 4 TDC units in measurement (a) and theory (b). One beam is delayed by 300 mm. Due to temporal separation of the coincidence signal and crosstalk, the latter expected around Δx = 0 is suppressed (Fig. 7(a)). The NLC temperature is 25°C, accidentals are removed and 54 M frames are evaluated.

Fig. 9
Fig. 9

Measurements (upper row) and theory (lower row) of the second-order correlation function G(2)(Δϱ%, z) for different crystal positions z = 0, 5, 10 mm and a fixed crystal temperatures T = 23°C. Pixel crosstalk is present at small Δx and superimposes the light’s coincidence signal. Every measurement consists of 54 M frames. A coincidence window of 9 TDC units is used and accidentals are removed.

Fig. 10
Fig. 10

Measurements (upper row) and theory (lower row) of the second-order correlation function G(2)(Δϱ%, z) for fixed crystal position z = 5 mm and different crystal temperatures T = 25, 24, 23°C. Pixel crosstalk is present at small Δx and superimposes the light’s coincidence signal. Every measurement consists of 54 M frames. A coincidence window of 9 TDC units is used and accidentals are removed. Note that in the first two measurements, the beam distance is slighty higher due to realignment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| Ψ = d 2 q Λ ( q , q ) | 1 q s | 1 q i ,
Λ ( q , q ) sin c { 1 2 [ Δ k z ( q , q , ω c , T ) + 2 π G ] L }
G ( 2 ) ( Δ ϱ , z ) | d 2 q Λ ( q , q ) × H s ( q , z ) H i ( q , z ) exp ( i q Δ ϱ / m ) | 2 ,
H j ( q , z ) = exp [ i k z + i z 2 k | q | 2 ] ,

Metrics