Abstract

This study reports for the first time an all-optically controllable nanoparticle random laser (NPRL) in a well-aligned laser-dye-doped liquid crystal (LDDLC) cell added with NPs and azo-dyes. Experimental results display that the NPRL can be obtained when the pumped energy exceeds the energy threshold (~3.5 μJ/pulse). The occurrence of the NPRL is attributable to the enhancement of the fluorescence by the multi-scattering events of the fluorescence photons from the randomly distributed NPs in the diffusion rout of the well-aligned LDDLC cell. In addition, the lasing intensity of the NPRL can decrease with increasing irradiation time of one UV beam. Continuing irradiation of one green beam following the UV illumination can increasingly recover the lasing intensity of the NPRL. The all-optically reversible controllability of the NPRL is basically attributed to the successive UV-beam-induced increase and green-beam-induced decrease in the randomness of the LDDLC via their interactions with the curved cis and rod-like trans isomers after the accumulation of the trans→cis and cis→trans back isomerizations of the azo-dyes, respectively. The former and latter mechanisms can decrease and increase the laser-dye’s absorption and thus the induced spontaneous emission, respectively. These consequences can decrease and increase the lasing intensity, or equivalently, increase and decrease the energy threshold for the occurrence of the NPRL, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye

Chia-Rong Lee, Jia-De Lin, Bo-Yuang Huang, Ting-Shan Mo, and Shuan-Yu Huang
Opt. Express 18(25) 25896-25905 (2010)

All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu
Opt. Express 18(3) 2406-2412 (2010)

Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell

Chia-Rong Lee, Shih-Hung Lin, Jin-Wei Guo, Jia-De Lin, Hong-Lin Lin, Yang-Chen Zheng, Chia-Lien Ma, Chi-Ting Horng, Han-Ying Sun, and Shuan-Yu Huang
Opt. Mater. Express 5(6) 1469-1481 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  3. D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
    [Crossref] [PubMed]
  4. V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
    [Crossref] [PubMed]
  5. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  6. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
    [Crossref]
  7. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
    [Crossref]
  8. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
    [Crossref] [PubMed]
  9. Q. Song, S. Xiao, X. Zhou, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
    [Crossref] [PubMed]
  10. S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
    [Crossref] [PubMed]
  11. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
    [Crossref] [PubMed]
  12. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
    [Crossref]
  13. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  14. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38(9), 1557–1559 (2013).
    [Crossref] [PubMed]
  15. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
  16. H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
    [Crossref]
  17. C.-R. Lee, S.-H. Lin, J.-W. Guo, J.-D. Lin, H.-L. Lin, Y.-C. Zheng, C.-L. Ma, C.-T. Horng, H.-Y. Sun, and S.-Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dye doped liquid crystal cell,” Opt. Mater. Express 5(6), 1469–1481 (2015).
    [Crossref]
  18. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
    [Crossref] [PubMed]
  19. J.-D. Lin, Y.-M. Lin, T.-S. Mo, and C.-R. Lee, “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal,” Opt. Express 22(8), 9171–9181 (2014).
    [Crossref] [PubMed]
  20. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [Crossref]

2015 (1)

2014 (1)

2013 (1)

2010 (2)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

2005 (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

2004 (2)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2003 (1)

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

2002 (1)

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[Crossref] [PubMed]

2000 (1)

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

1999 (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

1998 (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Aizawa, M.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Apalkov, V. M.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Barna, V.

Baughman, R. H.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Bian, H.

Burin, A. L.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

Cao, H.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

Chang, R. P. H.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chang, S.-H.

Chu, S.-C.

Coles, H. J.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

De Luca, A.

Elim, H. I.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Ferjani, S.

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Fujisawa, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gottardo, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

Guo, C.-H.

Guo, J.-W.

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Horng, C.-T.

Huang, B.-Y.

Huang, S.-Y.

Ikeda, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Ji, W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Kanazawa, A.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lee, B.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, C.-R.

Lee, H.-K.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lin, H.-L.

Lin, J.-D.

Lin, S.-H.

Lin, Y.-M.

Liu, L.

Liu, X.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

Liu, Y. J.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Lv, Z.

Ma, C.-L.

Mo, T.-S.

Morris, S. M.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Pei, Y.

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Raikh, M. E.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Seeling, E. W.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

Shapiro, B.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[Crossref] [PubMed]

Shiono, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Song, Q.

Strangi, G.

Sun, H.-Y.

Sun, X.

Sun, X. W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Versace, C.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Z.

Wiersma, D.

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

Wu, Y.

Xiao, S.

Xu, J. Y.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

Xu, L.

Yao, F.

Yaroshchuk, O.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

Yoshino, K.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Zakhidov, A.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Zhang, Y.

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, Y.-C.

Zhou, W.

Zhou, X.

Appl. Phys. Lett. (3)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Chem. Mater. (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random Lasers With Coherent Feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003).
[Crossref]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

D. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[Crossref]

Phys. Rev. Lett. (3)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[Crossref] [PubMed]

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top view of the experimental setup for examining the optically controllable NPRL based on an azo-dye-added LDDLC cell doping with NPs. One pumped pulse beam is propagated along the + x direction and then focused by a cylindrical lens on a striped region near one of the edges of the cell. One lateral random lasing emission can be stimulated along the + z direction normally out of that edge of the cell. The polarization of the incident pulses is pre-set parallel to the LC-aligned y-direction of the LDDLC cell such that the absorption of the laser-dye is maximum. One non-polarized UV beam and one cw circularly-polarized green beam are installed to pre-irradiate the pumped stripe region of the cell for investigating the all-optical controllability of the NPRL.

Fig. 2
Fig. 2

Variations of (a) the measured intensity spectra and (b) the peak intensity of the lateral fluorescence emission output and corresponding FWHM with incident pumped energy for the NPRL of the well-aligned azo-dye-added LDDLC cell doping with NPs. The inset in (a) shows the obtained lateral random lasing pattern on the screen at Ep = 12 μJ/pulse. The energy threshold is around 3.5 μJ/pulse.

Fig. 3
Fig. 3

All-optically-reversible controllability of the NPRL based on the LDDLC cell under the successive irradiations of UV and green beams. Variations of the measured intensity spectra of fluorescence emission output (a) with increasing tUV from 0 min to 15 min (IUV = 300 mW/cm2, IG = 0) and then (b) with increasing tG from 0 s to 25 s (IG = 8.28 mW/cm2, IUV = 0) at Ep = 12 μJ/pulse for the NPRL in the LDDLC cell.

Fig. 4
Fig. 4

Evolutions of measured absorption spectrum of 12 wt% 4MAB dissolved in E7 (a) before and after the UV irradiation with 300 mW/cm2 for 15 mins and (b) after the green-beam-irradiation with 8.28 mW/cm2 for 25 s following the UV irradiation.

Fig. 5
Fig. 5

(a) Schema for the all-optically isothermal change in the order of the LC orientation. The order of the LC orientation decreases and increases when the added azo-dyes are excited successively by UV and green beams, respectively, via accumulative effects of trans-cis and cis-trans back isomerizations, respectively. (b) A model describing the all-optical controllability of the NPRL based on the azo-dye-added LDDLC doping with NPs. Under the UV-beam (green-beam) irradiation, the increase of the randomness (order) of the LDDLC decreases (increases) the laser-dye’s absorption and thus the associated spontaneous emission under the excitation of y-polarized pumped pulses. The consequence induces the decrease (increase) of the lasing intensity of the NPRL which is generated by the multiple scattering events of spontaneously-emitted fluorescence photons from the randomly-distributed NPs in the diffusion routes of the LDDLC cell.

Fig. 6
Fig. 6

Spontaneous emission spectra for azo-dye-added LDDLC cell doping with NPs before and after the UV-irradiation with 300 mW/cm2 for 15 mins (presented by black and green curves, respectively) measured under the excitation of the cw DPSS laser-beam (532 nm) with 4.96 mW/cm2 for 1 s.

Fig. 7
Fig. 7

Recovery of the NPRL signal of the LDDLC cell in dark after the UV pre-irradiation. Variations of the measured intensity spectra of the fluorescence emission output of the LDDLC cell at Ep = 12 μJ/pulse with increasing the time as the cell is in dark from tdark = 0 min to 15 min after the cell is pre-illuminated by the UV light with 300mW/cm2 for 15 mins.

Metrics