Abstract

We report an efficient energy-time entangled photon-pair source based on four-wave mixing in a CMOS-compatible silicon photonics ring resonator. Thanks to suitable optimization, the source shows a large spectral brightness of 400 pairs of entangled photons /s/MHz for 500 μW pump power, compatible with standard telecom dense wavelength division multiplexers. We demonstrate high-purity energy-time entanglement, i.e., free of photonic noise, with near perfect raw visibilities (> 98%) between various channel pairs in the telecom C-band. Such a compact source stands as a path towards more complex quantum photonic circuits dedicated to quantum communication systems.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

19 December 2016: A correction was made to the title.


OSA Recommended Articles
Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator

Mikio Fujiwara, Ryota Wakabayashi, Masahide Sasaki, and Masahiro Takeoka
Opt. Express 25(4) 3445-3453 (2017)

Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons

Dongpeng Kang, Ankita Anirban, and Amr S. Helmy
Opt. Express 24(13) 15160-15170 (2016)

Micrometer-scale integrated silicon source of time-energy entangled photons

Davide Grassani, Stefano Azzini, Marco Liscidini, Matteo Galli, Michael J. Strain, Marc Sorel, J. E. Sipe, and Daniele Bajoni
Optica 2(2) 88-94 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Lifante, Integrated Photonics (Fundamentals) (Wiley, 2003).
    [Crossref]
  2. H. C. Lim and A. Yoshizawa, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology 16, 225–235 (2010).
    [Crossref]
  3. L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
    [Crossref]
  4. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
    [Crossref]
  5. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
    [Crossref]
  6. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
    [Crossref] [PubMed]
  7. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
  8. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
    [Crossref] [PubMed]
  9. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
    [Crossref] [PubMed]
  10. D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
    [Crossref] [PubMed]
  11. R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
    [Crossref] [PubMed]
  12. S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
    [Crossref]
  13. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
    [Crossref]
  14. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
    [Crossref]
  15. Q. Lin, J. P. Oskar, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref] [PubMed]
  16. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  17. S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).
  18. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
    [Crossref] [PubMed]
  19. C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
    [Crossref]
  20. S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
    [Crossref]
  21. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [Crossref] [PubMed]
  22. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  23. J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
    [Crossref] [PubMed]
  24. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
    [Crossref] [PubMed]
  25. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  26. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref] [PubMed]
  27. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
    [Crossref]
  28. F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
    [Crossref]
  29. R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
    [Crossref] [PubMed]
  30. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
    [Crossref] [PubMed]
  31. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
    [Crossref] [PubMed]

2016 (4)

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

2015 (10)

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref] [PubMed]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

2014 (5)

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

2010 (1)

H. C. Lim and A. Yoshizawa, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology 16, 225–235 (2010).
[Crossref]

2009 (1)

2007 (1)

2004 (1)

2002 (2)

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Agrawal, G. P.

Aktas, D.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

Alibart, O.

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Almeida, V. R.

Alsing, P. M.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Andreani, L. C.

Aoki, T.

Azzini, S.

Baehr-Jones, T.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Bajoni, D.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref] [PubMed]

Bloomer, R.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Bonneau, D.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Chae, C. J.

Cheben, P.

Choi, D.-Y.

Chu, S.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref] [PubMed]

Chu, S. T.

Clark, A. S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Clerici, M.

Collins, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

D’Auria, V.

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

Dong, S.

Dorenbos, S. N.

Duchesne, D.

Eggleton, B. J.

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Engin, E.

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Fanto, M. L.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Fedrici, B.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

Ferrera, M.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Fujiwara, M.

Galland, C.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Galli, M.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Grassani, D.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref] [PubMed]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Guo, Y.

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Harris, N. C.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

He, J.

Heideman, R. G.

Helt, L. G.

Hochberg, M.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Hoekman, M.

Howland, G. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Huang, Y.

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Janz, S.

Jiang, W. C.

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Kaiser, F.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Kumar, R.

Labonté, L.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

Leinse, A.

Leong, P. H. W.

Lifante, G.

G. Lifante, Integrated Photonics (Fundamentals) (Wiley, 2003).
[Crossref]

Lim, H. C.

H. C. Lim and A. Yoshizawa, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology 16, 225–235 (2010).
[Crossref]

Lin, Q.

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

Q. Lin, J. P. Oskar, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

Lipson, M.

Liscidini, M.

Little, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Little, B. E.

Lu, X.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

Lunghi, T.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

Lv, N.

Mahendra, A.

Marpaung, D.

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

Meany, T.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Menotti, M.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

Miwa, Y.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Mookherjea, S.

Morandotti, R.

Moss, D.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Moss, D. J.

Mulkey, D.

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

Nambu, Y.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Ngah, L. A.

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

O’Brien, J. L.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Oldenbeuving, R. M.

Ong, J. R.

Oskar, J. P.

Painter, O.

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Pasquazi, A.

Peccianti, M.

Peng, J.

Pfister, O.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Pirotta, S.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

Preble, S. F.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Pysher, M.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

Razzari, L.

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Roeloffzen, C. G. H.

Rogers, S.

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

Sasaki, M.

Savanier, M.

Shahrokhshahi, R.

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Silverstone, J. W.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

Simbula, A.

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Sipe, J. E.

Sorel, M.

Steel, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Steidle, J. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Strain, M. J.

Suo, J.

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Taddei, C.

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Tanzilli, S.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thompson, M. G.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Tison, C. C.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

van Dijk, P. W. L.

Wakabayashi, R.

Wang, Z.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Williams, R. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Withford, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Xiong, C.

Xu, D.-X.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Yoshino, K.

Yoshizawa, A.

H. C. Lim and A. Yoshizawa, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology 16, 225–235 (2010).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Zhang, J.

Zhang, W.

Zhang, X.

Zhou, Q.

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Rogers, X. Lu, W. C. Jiang, and Q. Lin, “Twin photon pairs in a high-Q silicon microresonator,” Appl. Phys. Lett. 107, 041102 (2015).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonté, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108, 231108 (2016).
[Crossref]

Laser & Photon. Rev. (2)

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser & Photon. Rev. 9, 1–5 (2015).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser & Photon. Rev. 8, 42–46 (2014).
[Crossref]

Lasers & Photon. Rev. (1)

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Lasers & Photon. Rev. 10, 451–457 (2016).
[Crossref]

Nat. Comm. (1)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Comm. 6, 7948 (2015).
[Crossref]

Nat. Phot. (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Phot. 8, 104–108 (2014).
[Crossref]

Opt. Express (9)

Q. Lin, J. P. Oskar, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref] [PubMed]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (2)

Optical Fiber Technology (1)

H. C. Lim and A. Yoshizawa, “Wavelength-multiplexed entanglement distribution,” Optical Fiber Technology 16, 225–235 (2010).
[Crossref]

Phys. Rev. A (1)

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Phys. Rev. Appl. (1)

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Phys. Rev. Lett. (2)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 107, 030505 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sci. Rep. (1)

D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, and D. Bajoni, “Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing,” Sci. Rep. 6, 23564 (2016).
[Crossref] [PubMed]

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. Little, S. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Other (2)

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” eprint ArXiv:1605.06540 (2016).

G. Lifante, Integrated Photonics (Fundamentals) (Wiley, 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectrum from the sample. The left part is devoted for the setup, PC: polarization controller, PD: power detector. The right bottom part shows the strategy of our source: spectrally-correlated photon pairs are generated in ITU-grid paired channels located symmetrically with respect to the pump channel. More specifically, the pump laser is matched to a resonance peak corresponding to the international telecom union (ITU) channel 50, and twin photons are produced in two symmetrical resonance peaks, i.e, ITU channels 48/52, 45/55, 43/57. For clarity, the most separated channel pair (ITU channels 41/59) is not illustrated.

Fig. 2
Fig. 2

Quadratic evolution of the internal photon-pair production rate as a function of the coupled pump power.

Fig. 3
Fig. 3

Experimental setup. (a) Scheme of the EPPS (see main text for details). BPF: bandpass filter. (b) Employed filter acting as a spectrometer to measure the transmission profile, in the form of a frequency comb, at the output of the integrated Si-resonator. PD: power detector. (c) Coincidence histogram obtained from spectrally demultiplexed photon pairs. For the sake of clarity, the drawing has been simplified as we use two cascaded bandpass filters to reject the pump and a pair of 8×100 GHz DWDM devices associated with a circulator and a fiber Bragg grating filter. Circ: circulator, FM: Faraday mirror, APD: avalanche photodiode, F-MI: fiber Michelson interferometer.

Fig. 4
Fig. 4

Two-photon interference fringes obtained with energy-time entangled photons. The curves show the coincidence counts for the ITU paired channels 48/52 (a) 45/55 (b) 43/57 (c) and 41/59 (d) as a function of the interferometer phase. Experimental data are assumed to have an error-bar magnitude of N (N stands as the number of coincidences measured) as the photon pair emission statistic is poissonian. (e) Raw histograms corresponding to 3 particular phase values for curve (a): minimum, half a maximum, and maximum of the two-photon interference fringe.

Metrics