Abstract

We present a metamaterial element designed as an efficient radiator for waveguide-fed metasurface antennas. The metamaterial element is an electrically-small, complimentary electric-LC (cELC) resonator designed to exhibit large radiated power while maintaining low ohmic losses. The shape of the element is tapered to simultaneously achieve broadband operation and suppression of cross polarization radiation. Full-wave numerical studies at the K-band are conducted to examine its performance when etched into a microstrip line. In this configuration, the element shows a radiation efficiency of 90.2% and a fractional bandwidth of 8.7%. To investigate the potential benefits of the proposed element in two-dimensional platforms, the radiative characteristics of the element are calculated when the element is embedded in a dielectric-filled parallel-plate waveguide. This efficient metamaterial element has potential application as a building block for metasurface devices used in imaging, sensing, wireless power transfer, and wireless communication systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, and David R. Smith
Opt. Express 26(5) 5281-5291 (2018)

Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies

Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Jonah N. Gollub, and David R. Smith
J. Opt. Soc. Am. B 33(6) 1098-1111 (2016)

Broadband complementary ring-resonator based terahertz antenna

Jianchun Xu, Lei Tao, Ru Zhang, Yanan Hao, Shanguo Huang, and Ke Bi
Opt. Express 25(15) 17099-17104 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  3. M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
    [Crossref]
  4. M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
    [Crossref]
  5. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  6. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
    [Crossref] [PubMed]
  7. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
    [Crossref] [PubMed]
  8. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
    [Crossref]
  9. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  10. T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
    [Crossref]
  11. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
    [Crossref]
  12. A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
    [Crossref]
  13. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
    [Crossref]
  14. H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
    [Crossref]
  15. D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  17. D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
    [Crossref] [PubMed]
  18. M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011).
    [Crossref] [PubMed]
  19. J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  20. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  21. F. Martín, Artificial Transmission Lines for RF and Microwave Applications, 1st ed. (John Wiley & Sons, 2015).
  22. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
  23. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  24. P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
    [Crossref]
  25. M. Johnson, P. Bowen, N. Kundtz, and A. Bily, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
    [Crossref] [PubMed]
  26. L. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. (posted 03 March 2016, in press).
    [Crossref]
  27. M. Johnson, A. Bily, and N. B. Kundtz, “Predictive modeling of far-field pattern of a metamaterial antenna,” in 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014).
    [Crossref]

2016 (3)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

2015 (2)

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

2014 (2)

2013 (5)

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
[Crossref]

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

2012 (4)

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
[Crossref]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

M. Lu, W. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

2004 (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bily, A.

M. Johnson, P. Bowen, N. Kundtz, and A. Bily, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref] [PubMed]

M. Johnson, A. Bily, and N. B. Kundtz, “Predictive modeling of far-field pattern of a metamaterial antenna,” in 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014).
[Crossref]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bowen, P.

Bowern, P. T.

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

Boyarsky, M.

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

Brady, D.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

Brady, D. J.

Brown, E. R.

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cummer, S. A.

A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
[Crossref]

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

Ettorre, M.

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
[Crossref]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fromenteze, T.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gollub, J.

Gollub, J. N.

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grbic, A.

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
[Crossref]

Guney, D.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Hara, J. O.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hawkes, A. M.

A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Imani, M. F.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

Johnson, M.

M. Johnson, P. Bowen, N. Kundtz, and A. Bily, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref] [PubMed]

M. Johnson, A. Bily, and N. B. Kundtz, “Predictive modeling of far-field pattern of a metamaterial antenna,” in 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014).
[Crossref]

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Katko, A. R.

A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kundtz, N.

Kundtz, N. B.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

M. Johnson, A. Bily, and N. B. Kundtz, “Predictive modeling of far-field pattern of a metamaterial antenna,” in 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014).
[Crossref]

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Li, W.

Lipworth, G.

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lu, M.

Marks, D. L.

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Mock, J.

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mrozack, A.

Odabasi, H.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Pulido-Mancera, L.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

Reynolds, M.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Reynolds, M. S.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

Robbins, D.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rudolph, S. M.

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Sleasman, T.

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Smith, D. R.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Sonkusale, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Stewart, W.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Teixeira, F.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Venkatesh, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

A. M. Hawkes, A. R. Katko, and S. A. Cummer, “A microwave metamaterial with integrated power harvesting functionality,” Appl. Phys. Lett. 103(16), 163901 (2013).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (1)

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

JOSA B (2)

T. Sleasman, M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” JOSA B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33(10), 2082–2092 (2016).
[Crossref]

New J. Phys. (1)

P. T. Bowern, T. Driscoll, N. B. Kundtz, and D. R. Smith, “Using a discrete dipole approximation to predict complete scattering of complicated metamaterials,” New J. Phys. 14(3), 033038 (2012).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental realization of a metamaterial detector focal plane array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Science (2)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (5)

F. Martín, Artificial Transmission Lines for RF and Microwave Applications, 1st ed. (John Wiley & Sons, 2015).

D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

L. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. (posted 03 March 2016, in press).
[Crossref]

M. Johnson, A. Bily, and N. B. Kundtz, “Predictive modeling of far-field pattern of a metamaterial antenna,” in 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) The geometry of a rectangular cELC and (d) proposed metamaterial element patterned into a microstrip line. Yellow indicates copper. Close-up view of the elements designed to operate at f0 = 22 GHz. Design parameters of the rectangular cELC are a = 3 mm, b = 2.2 mm, l = 1.5 mm, w = 0.92 mm, g1 = 0.36 mm, g2 = 0.225 mm, g3 = 0.3 mm and those of the proposed element are c = 3mm, d = 0.5 mm, g = 0.129 mm. (b) The electric field distribution on the aperture plane for the rectangular and (e) the proposed element at the operating frequency (f0 = 22 GHz). In both cases, the electric fields aligned in the z direction contributes to radiation. (c), (f) The normalized magnitude of surface current at f0 = 22 GHz.
Fig. 2
Fig. 2 (a) The simulation setup for the two dimensional metasurface consisting of the proposed metamaterial element. Open boundaries are applied to all the side boundaries of the waveguide to truncate the simulation domain. (b) The normalized magnitude of the surface current distribution on the metamaterial element at the resonant frequency (f0 = 21.54 GHz). Design parameters are the same as the parameters given in Fig. 1(b) and 1(c) Variations in radiation power spectra depending on the angle of incidence (θ).

Tables (1)

Tables Icon

Table 1 Summary of simulated antenna parameters. In all simulations, the waveguide is excited by 0.5W

Metrics