Abstract

Backward Raman amplification is applied to improve the conversion efficiency of two-orthogonal-pump four-wave mixing (FWM) with polarization insensitivity. Wavelength conversion with ~0dB efficiency and negligible polarization dependency is demonstrated by using a common highly nonlinear fiber without pump dithering. The conversion efficiency is increased by ~29dB with Raman enhancement. We also discuss the impact of the Raman pump power and the FWM pump powers on the performance of wavelength conversion. The results indicate that moderate pump powers without inducing significant spontaneous noise and stimulated Brillouin scattering are favorable to ensure high conversion efficiency and low excess noise for performance optimization.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber

Takuo Tanemura, Kazuhiro Katoh, and Kazuro Kikuchi
Opt. Express 13(19) 7497-7505 (2005)

Polarization-insensitive and widely tunable wavelength conversion for polarization shift keying signal based on four wave mixing in highly non-linear fiber

Md. Nur-Al-Safa Bhuiyan, Motoharu Matsuura, Hung Nguyen Tan, and Naoto Kishi
Opt. Express 18(3) 2467-2476 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  2. B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. S. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011).
    [Crossref]
  3. H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17), 3287–3290 (2013).
    [Crossref] [PubMed]
  4. L. Liu, E. Temprana, V. Ataie, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “All optical wavelength multicaster and regenerator based on four-mode phase-sensitive parametric mixer,” Opt. Express 23(24), 30956–30969 (2015).
    [Crossref] [PubMed]
  5. M. Sköld, M. Westlund, H. Sunnerud, and P. A. Andrekson, “All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats,” J. Lightwave Technol. 27(16), 3662–3671 (2009).
    [Crossref]
  6. K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
    [Crossref]
  7. I. Sackey, F. Da Ros, J. Karl Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
    [Crossref]
  8. M. F. Stephens, M. Tan, I. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1THz-bandwidth polarization-diverse optical phase conjugation of 10x114Gb/s DP-QPSK WDM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.6.
    [Crossref]
  9. H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3C.2.
    [Crossref]
  10. S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
    [Crossref]
  11. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
    [Crossref]
  12. S. Namiki, K. Solis-Trapala, H. N. Tan, M. Pelusi, and T. Inoue, “Multi-channel cascadable parametric signal processing for wavelength conversion and nonlinearity compensation,” J. Lightwave Technol., in press (2016).
  13. H. N. Tan, T. Inoue, K. Solis-Trapala, S. Petit, Y. Oikawa, K. Ota, S. Takasaka, T. Yagi, M. Pelusi, and S. Namiki, “On the cascadability of all-optical wavelength converter for high-order QAM formats,” J. Lightwave Technol. 34(13), 3194–3205 (2016).
    [Crossref]
  14. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
    [Crossref]
  15. M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
    [Crossref]
  16. L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
    [Crossref]
  17. C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
    [Crossref]
  18. K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
    [Crossref]
  19. H. Nguyen Tan, T. Inoue, K. Tanizawa, S. Petit, Y. Oikawa, S. Takasaka, T. Yagi, and S. Namiki, “Counter-dithering pump scheme for cascaded degenerate FWM based wavelength converter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.4.
    [Crossref]
  20. M. Jazayerifar, I. Sackey, R. Elschner, S. Warm, C. Meuer, C. Schubert, and K. Petermann, “Impact of SBS on polarization-insensitive single pump optical parametric amplifiers based on a diversity loop scheme,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper Tu.4.6.4.
    [Crossref]
  21. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, and J. R. Taylor, “Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber,” Opt. Lett. 26(20), 1583–1585 (2001).
    [Crossref] [PubMed]
  22. J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
    [Crossref]
  23. X. Fu, X. Guo, and C. Shu, “Raman-enhanced phase-sensitive fibre optical parametric amplifier,” Sci. Rep. 6, 20180 (2016).
    [Crossref] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics (4th Edition) (Academic, 2006).
  25. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).

2016 (3)

2015 (2)

2013 (2)

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17), 3287–3290 (2013).
[Crossref] [PubMed]

2012 (2)

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
[Crossref]

2011 (1)

2010 (1)

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

2009 (1)

2005 (1)

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

2002 (2)

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

2001 (1)

1994 (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

Alam, S.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Alic, N.

Andrekson, P. A.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

M. Sköld, M. Westlund, H. Sunnerud, and P. A. Andrekson, “All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats,” J. Lightwave Technol. 27(16), 3662–3671 (2009).
[Crossref]

Ataie, V.

Bogris, A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Bres, C. S.

Chestnut, D. A.

Ciaramella, E.

Corcoran, B.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Da Ros, F.

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

de Matos, C. J. S.

e Silva, M. B. C.

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Freitas, J. F. L.

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

Fu, X.

X. Fu, X. Guo, and C. Shu, “Raman-enhanced phase-sensitive fibre optical parametric amplifier,” Sci. Rep. 6, 20180 (2016).
[Crossref] [PubMed]

Gholami, F.

Gomes, A. S. L.

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

Gruner-Nielsen, L.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Guo, X.

X. Fu, X. Guo, and C. Shu, “Raman-enhanced phase-sensitive fibre optical parametric amplifier,” Sci. Rep. 6, 20180 (2016).
[Crossref] [PubMed]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Ho, M. C.

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

Inoue, T.

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Jazayerifar, M.

Kakande, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Karl Fischer, J.

Karlsson, M.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Kazovsky, L. G.

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

Kuo, B. P. P.

Kurosu, T.

H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17), 3287–3290 (2013).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

Kurumida, J.

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

Lim, E. L.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Liu, L.

Lundstrom, C.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Lüthi, S. R.

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

Malik, R.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Marhic, M. E.

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

Mermelstein, M. D.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Mingyi, G.

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

Moro, S.

Myslivets, E.

Namiki, S.

O’Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Oikawa, Y.

Olsson, S. L. I.

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Ota, K.

Palsdottir, B.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Parmigiani, F.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Pedersen, M. E. V.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Pelusi, M.

Peric, A.

Petermann, K.

Petit, S.

H. N. Tan, T. Inoue, K. Solis-Trapala, S. Petit, Y. Oikawa, K. Ota, S. Takasaka, T. Yagi, M. Pelusi, and S. Namiki, “On the cascadability of all-optical wavelength converter for high-order QAM formats,” J. Lightwave Technol. 34(13), 3194–3205 (2016).
[Crossref]

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

Petropoulos, P.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Peucheret, C.

Phelan, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Radic, S.

Reeves-Hall, P. C.

Richardson, D.

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

Richardson, D. J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Richter, T.

Sackey, I.

Schubert, C.

Shu, C.

X. Fu, X. Guo, and C. Shu, “Raman-enhanced phase-sensitive fibre optical parametric amplifier,” Sci. Rep. 6, 20180 (2016).
[Crossref] [PubMed]

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Sköld, M.

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Solis-Trapala, K.

Sunnerud, H.

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Takasaka, S.

Tan, H. N.

Tanizawa, K.

H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17), 3287–3290 (2013).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

Taylor, J. R.

Temprana, E.

Uesaka, L.

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Westlund, M.

Wiberg, A. O. J.

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

Wong, K. Y. K.

Yagi, T.

Zlatanovic, S.

IEEE J. Sel. Top. Quantum Electron. (1)

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, “Controlling optical signals through parametric processes,” IEEE J. Sel. Top. Quantum Electron. 18(2), 717–725 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. Lundstrom, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10-db net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

K. K. Y. Wong, M. E. Marhic, L. Uesaka, and L. G. Kazovsky, “Polarization-independent fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(11), 1506–1508 (2002).
[Crossref]

J. Lightwave Technol. (8)

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

M. Sköld, M. Westlund, H. Sunnerud, and P. A. Andrekson, “All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats,” J. Lightwave Technol. 27(16), 3662–3671 (2009).
[Crossref]

B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. S. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011).
[Crossref]

E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
[Crossref]

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

I. Sackey, F. Da Ros, J. Karl Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
[Crossref]

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

H. N. Tan, T. Inoue, K. Solis-Trapala, S. Petit, Y. Oikawa, K. Ota, S. Takasaka, T. Yagi, M. Pelusi, and S. Namiki, “On the cascadability of all-optical wavelength converter for high-order QAM formats,” J. Lightwave Technol. 34(13), 3194–3205 (2016).
[Crossref]

Nat. Photonics (1)

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Opt. Commun. (1)

J. F. L. Freitas, M. B. C. e Silva, S. R. Lüthi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S–C band wavelength converter: experiment and simulations,” Opt. Commun. 255(4–6), 314–318 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Sci. Rep. (1)

X. Fu, X. Guo, and C. Shu, “Raman-enhanced phase-sensitive fibre optical parametric amplifier,” Sci. Rep. 6, 20180 (2016).
[Crossref] [PubMed]

Other (8)

G. P. Agrawal, Nonlinear Fiber Optics (4th Edition) (Academic, 2006).

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).

M. F. Stephens, M. Tan, I. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1THz-bandwidth polarization-diverse optical phase conjugation of 10x114Gb/s DP-QPSK WDM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.6.
[Crossref]

H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3C.2.
[Crossref]

S. Namiki, K. Solis-Trapala, H. N. Tan, M. Pelusi, and T. Inoue, “Multi-channel cascadable parametric signal processing for wavelength conversion and nonlinearity compensation,” J. Lightwave Technol., in press (2016).

L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear fiber with improved threshold for stimulated Brillouin scattering,” in European Conference and Exhibition on Optical Communication (ECOC, 2010), pp. 1–3.
[Crossref]

H. Nguyen Tan, T. Inoue, K. Tanizawa, S. Petit, Y. Oikawa, S. Takasaka, T. Yagi, and S. Namiki, “Counter-dithering pump scheme for cascaded degenerate FWM based wavelength converter,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.4.
[Crossref]

M. Jazayerifar, I. Sackey, R. Elschner, S. Warm, C. Meuer, C. Schubert, and K. Petermann, “Impact of SBS on polarization-insensitive single pump optical parametric amplifiers based on a diversity loop scheme,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper Tu.4.6.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of Raman-enhanced polarization-insensitive two-pump FWM.
Fig. 2
Fig. 2 Experimental setup on Raman-enhanced two-orthogonal-pump FWM. TL: tunable laser; PC: polarization controller; PBS: polarization beam splitter; MZM: Mach-Zehnder modulator; PRBS: pseudorandom binary sequence; PS: polarization scrambler; HNLF: highly nonlinear fiber; OBPF: optical band pass filter; OSA: optical spectrum analyzer.
Fig. 3
Fig. 3 Output FWM spectra with Raman pump (w. Raman) and without Raman pump (w/o Raman). The polarization-insensitive idler is indicated by a dashed box.
Fig. 4
Fig. 4 Output power of the converted idler against polarization state of the input signal. Input signal power is −5.0 dBm.
Fig. 5
Fig. 5 (a) Eye diagrams and (b) BER measurement of the input signal (B2B, back to back), and the converted idlers in Raman-enhanced two-orthogonal-pump FWM when polarization scrambling of the input signal is turned off (Fixed) and turned on (Scrambled).
Fig. 6
Fig. 6 Simulated contour maps of (a) conversion-efficiency enhancement factor (ξ) and (b) overall conversion efficiency ( G i ) in the FWM with Raman assistance. ξand G i are expressed in dB.
Fig. 7
Fig. 7 Experimental, analytical and simulated results of the conversion-efficiency enhancement factor ξ for different FWM pump powers. The corresponding Raman pump powers are shown in Table 1.
Fig. 8
Fig. 8 (a) Measured idler SNR and (b) overall conversion efficiency ( G i ) for different combinations of FWM pump power and Raman pump power. Insets are eye diagrams of the idler at different values of SNR.

Tables (1)

Tables Icon

Table 1 Parameters for five cases of power combination

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d A 1,x dz =iγ[ P 1,x +2( b P R + P 2,y 3 ) ] A 1,x + 1 2 ( g 1 P R α ) A 1,x ,
d A 2,y dz =iγ[ P 2,y +2( b P R + P 1,x 3 ) ] A 2,y + 1 2 ( g 2 P R α ) A 2,y ,
d A 3,x dz =i2γ( P 1,x +b P R + P 2,y 3 ) A 3,x +i 2 3 γ A 1,x A 2,y A 4,y * e iΔβz + 1 2 ( g 3 P R α ) A 3,x ,
d A 4,y dz =i2γ( P 2,y +b P R + P 1,x 3 ) A 4,y +i 2 3 γ A 1,x A 2,y A 3,x * e iΔβz + 1 2 ( g 4 P R α ) A 4,y ,
d A 3,y dz =i2γ( P 2,y +b P R + P 1,x 3 ) A 3,y +i 2 3 γ A 1,x A 2,y A 4,x * e iΔβz + 1 2 ( g 3 P R α ) A 3,y ,
d A 4,x dz =i2γ( P 1,x +b P R + P 2,y 3 ) A 4,x +i 2 3 γ A 1,x A 2,y A 3,y * e iΔβz + 1 2 ( g 4 P R α ) A 4,x .
P j,k ( z )= P j,k ( 0 )exp{ ( g R P R α )z },
P 4,y ( L )= 4 9 γ 2 L 2 P 1,x ave P 2,y ave P 3,x ( 0 )exp{ ( g R P R α )L },
P 4,x ( L )= 4 9 γ 2 L 2 P 1,x ave P 2,y ave P 3,y ( 0 )exp{ ( g R P R α )L },
G i = 4 9 γ 2 L 2 η 1,x η 2,y P 1,x ( 0 ) P 2,y ( 0 )exp{ ( g R P R α )L }.
ξ= η 1,x η 2,y exp{ ( g R P R α )L }.
G R,sat = ( 1+r ) G R 1+r 1+r G R 1+r ,

Metrics