Abstract

We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F3/24I9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F3/24I11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. The waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.2W laser amplification at 1427nm on the 4F3/2 to 4I13/2 spectral line in an Nd3+ doped fused silica optical fiber

Jay W. Dawson, Paul H. Pax, Graham S. Allen, Derrek R. Drachenberg, Victor V. Khitrov, Nick Schenkel, and Michael J. Messerly
Opt. Express 24(25) 29138-29152 (2016)

E-band fiber laser performance and power analysis with longitudinally averaged population modeling

Leily S. Kiani, Raymond J. Beach, Jay W. Dawson, Paul H. Pax, Graham S. Allen, Derrek R. Drachenberg, Victor V. Khitrov, Nick Schenkel, Matthew J. Cook, Robert P. Crist, and Michael J. Messerly
J. Opt. Soc. Am. B 35(11) 2833-2841 (2018)

Higher-order core-guided modes in two-dimensional photonic bandgap fibers

Vincent Pureur and Boris T. Kuhlmey
J. Opt. Soc. Am. B 29(7) 1750-1765 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
    [Crossref]
  2. E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).
  3. I. P. G. Photonics, YLS series, http://www.ipgphotonics.com .
  4. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  5. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), 1182–1186 (1964).
    [Crossref]
  6. S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
    [Crossref]
  7. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
    [Crossref]
  8. I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
    [Crossref] [PubMed]
  9. I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
    [Crossref]
  10. L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
    [Crossref]
  11. A. L. Cook and H. D. Hendricks, “Diode-laser-pumped tunable 896-939.5-nm neodymium-doped fiber laser with 43-mW output power,” Appl. Opt. 37(15), 3276–3281 (1998).
    [Crossref] [PubMed]
  12. P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
    [Crossref]
  13. P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/2 - 4I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11(12), 1593–1595 (1999).
    [Crossref]
  14. I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
    [Crossref]
  15. M. J. Soderlund and S. K. T. Tammela, “A depressed-index cladding filter for suppressing 1.06μm emission in a Nd-doped silica fiber amplifier,” in Proceedings Optical Fiber Communication Conference (IEEE, 2004), pp. 3–5.
  16. D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
    [Crossref]
  17. S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
    [Crossref]
  18. L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
    [Crossref]
  19. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31(10), 1388–1390 (2006).
    [Crossref] [PubMed]
  20. M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
    [Crossref] [PubMed]
  21. B. Leconte, B. Cadier, H. Gilles, S. Girard, T. Robin, and M. Laroche, “Extended tunability of Nd-doped fiber lasers operating at 872-936 nm,” Opt. Lett. 40(17), 4098–4101 (2015).
    [Crossref] [PubMed]
  22. C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2), 317–322 (2010).
    [Crossref]
  23. B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
    [Crossref] [PubMed]
  24. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
    [Crossref] [PubMed]
  25. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
    [Crossref] [PubMed]
  26. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
    [Crossref] [PubMed]
  27. A. Baz, L. Bigot, G. Bouwmans, and Y. Quiquempois, “Single-mode, large mode area, solid-core photonic bandgap fiber with hetero-structured cladding,” J. Lightwave Technol. 31(5), 830–835 (2013).
    [Crossref]
  28. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
    [Crossref] [PubMed]
  29. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
    [Crossref] [PubMed]
  30. E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(26), 27197–27204 (2010).
    [Crossref] [PubMed]
  31. S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jørgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express 20(6), 6010–6020 (2012).
    [Crossref] [PubMed]
  32. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
    [Crossref] [PubMed]
  33. R. Goto, E. C. Magi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178nm,” Electron. Lett. 45(17), 877–878 (2009).
    [Crossref]
  34. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
    [Crossref] [PubMed]
  35. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
    [Crossref] [PubMed]
  36. B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
    [Crossref]
  37. X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  38. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
    [Crossref] [PubMed]
  39. J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
    [Crossref] [PubMed]
  40. F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).
  41. P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
    [Crossref]
  42. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]

2016 (1)

P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

2015 (1)

2014 (3)

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

2013 (3)

2012 (3)

2011 (2)

2010 (3)

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(26), 27197–27204 (2010).
[Crossref] [PubMed]

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2), 317–322 (2010).
[Crossref]

2009 (3)

2008 (2)

2007 (2)

2006 (3)

2005 (3)

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
[Crossref] [PubMed]

2004 (1)

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

2003 (1)

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

1999 (1)

P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/2 - 4I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11(12), 1593–1595 (1999).
[Crossref]

1998 (1)

1997 (1)

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
[Crossref]

1987 (1)

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

1986 (2)

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
[Crossref] [PubMed]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

1985 (1)

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

1964 (1)

Alcock, I. P.

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
[Crossref] [PubMed]

Alkeskjold, T. T.

Baek, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Bamford, D. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Bartolacci, C.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2), 317–322 (2010).
[Crossref]

Barty, C. P. J.

Baz, A.

Beach, R. J.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Bigot, L.

Birks, T. A.

Bouwmans, G.

Boyland, A. J.

Broeng, J.

Brown, A.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Bufetov, I. A.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Cadier, B.

Carlson, C. G.

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

Cerqueira S, A.

Chung, S.

Codemard, C.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Cook, A. L.

Cook, D. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Cordeiro, C. M. B.

Coscelli, E.

Cucinotta, A.

Dawson, J. W.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Demokan, M. S.

DeSantolo, A.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Dianov, E. M.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

DiMarcello, F. V.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Dong, L.

Douay, M.

Doya, V.

P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

Dragic, P. D.

P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/2 - 4I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11(12), 1593–1595 (1999).
[Crossref]

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
[Crossref]

Drobshoff, A. D.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Du, J.

Dudin, V. V.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Dupriez, P.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Eggleton, B. J.

Eicholt, C. J.

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

Eidam, T.

Ferguson, A. I.

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
[Crossref] [PubMed]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

Fermann, M. E.

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Fini, J. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Fleming, S.

Foy, P.

Fu, L. B.

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

Galvanauskas, A.

George, A. K.

Gilles, H.

Girard, S.

Goncharov, S. E.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Goto, R.

R. Goto, E. C. Magi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178nm,” Electron. Lett. 45(17), 877–878 (2009).
[Crossref]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

Grudinin, A. B.

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Gu, G.

Guryanov, A. N.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Hanna, D. C.

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
[Crossref] [PubMed]

Hawkins, T.

Heebner, J. E.

Hendricks, H. D.

Himeno, K.

Hu, I. N.

Ibsen, M.

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

Jackson, S. D.

R. Goto, E. C. Magi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178nm,” Electron. Lett. 45(17), 877–878 (2009).
[Crossref]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

Jansen, F.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Jauncey, I. M.

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

Jauregui, C.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Jeong, Y.

Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Jin, W.

Jørgensen, M. M.

Jung, Y.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

Kaplan, A.

Kim, J.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Knight, J. C.

Koester, C. J.

Kong, F.

Koshiba, M.

Koška, P.

P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

Kuhlmey, B. T.

Lablonde, L.

Lægsgaard, J.

Laroche, M.

Laurila, M.

Leconte, B.

Lee, J. W.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

Leick, L.

Liem, A.

Limpert, J.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Little, L. M.

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
[Crossref]

Liu, Y.

Lopez, F.

Luan, F.

Ma, X.

Magi, E. C.

R. Goto, E. C. Magi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178nm,” Electron. Lett. 45(17), 877–878 (2009).
[Crossref]

Mangan, B.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Mcclane, D.

Meng, L.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Messerly, M. J.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Monberg, E. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Mukasa, K.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

Murao, T.

Nicholson, J. W.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Nilsson, J.

Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[Crossref]

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Oh, K.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Otto, H.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

Otto, H. J.

Papen, G. C.

P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/2 - 4I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11(12), 1593–1595 (1999).
[Crossref]

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
[Crossref]

Passaro, D.

Pax, P. H.

Payne, D. N.

Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[Crossref]

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Payne, S. A.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Pennington, D. M.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Peterka, P.

P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

Petersen, S. R.

Philippov, V.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Poli, F.

Poole, S. B.

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Provino, L.

Quiquempois, Y.

Reekie, L.

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

Richardson, D. J.

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

Robin, T.

Sahu, J. K.

Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[Crossref]

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Saitoh, K.

Selleri, S.

Senatorov, A. K.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Sharpe, S. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

Shubin, A. V.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Snitzer, E.

Soderlund, M. J.

M. J. Soderlund and S. K. T. Tammela, “A depressed-index cladding filter for suppressing 1.06μm emission in a Nd-doped silica fiber amplifier,” in Proceedings Optical Fiber Communication Conference (IEEE, 2004), pp. 3–5.

Soh, D. B. S.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Stiles, E.

E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).

Stutzki, F.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Tammela, S. K. T.

M. J. Soderlund and S. K. T. Tammela, “A depressed-index cladding filter for suppressing 1.06μm emission in a Nd-doped silica fiber amplifier,” in Proceedings Optical Fiber Communication Conference (IEEE, 2004), pp. 3–5.

Taru, T.

Tropper, A. C.

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
[Crossref] [PubMed]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

Tünnermann, A.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Umnikov, A. A.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Vechkanov, N. N.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Wang, A.

Wang, Z.

Ward, B.

Ward, B. G.

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

Windeler, R. S.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

Wright, D. M.

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

Xiao, L.

Yashkov, M. V.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Yoo, S.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Zalevskii, I. D.

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Zhu, C.

Appl. Opt. (2)

Appl. Phys. B (1)

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2), 317–322 (2010).
[Crossref]

Electron. Lett. (3)

R. Goto, E. C. Magi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178nm,” Electron. Lett. 45(17), 877–878 (2009).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

L. Reekie, I. M. Jauncey, S. B. Poole, and D. N. Payne, “Diode-laser-pumped Nd3+-doped fibre laser operating at 938nm,” Electron. Lett. 23(17), 884–885 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Koška, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/2 - 4I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11(12), 1593–1595 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 - 4I9/2 transition in Nd,” IEEE Photonics Technol. Lett. 9(11), 1478–1480 (1997).
[Crossref]

L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser,” IEEE Photonics Technol. Lett. 17(2), 306–308 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Korea (1)

J. Quant. Electron. (1)

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9μm wavelength range,” J. Quant. Electron. 40(9), 1275–1282 (2004).
[Crossref]

Nat. Commun. (1)

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5(5085), 5085 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm,” Opt. Commun. 247(1), 153–162 (2005).
[Crossref]

I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9μm on the 4F3/2→4I9/2 transition,” Opt. Commun. 58(6), 405–408 (1986).
[Crossref]

Opt. Express (15)

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[Crossref] [PubMed]

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
[Crossref] [PubMed]

A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
[Crossref] [PubMed]

T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
[Crossref] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(26), 27197–27204 (2010).
[Crossref] [PubMed]

S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jørgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express 20(6), 6010–6020 (2012).
[Crossref] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
[Crossref] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
[Crossref] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[Crossref] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Optics (1)

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optics 1(4), 233–242 (2014).

Proc. SPIE (2)

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[Crossref]

B. G. Ward, D. M. Wright, C. J. Eicholt, and C. G. Carlson, “Photonic crystal fiber with resonant-coupling higher-order-mode suppression,” Proc. SPIE 7580, 758011 (2010).
[Crossref]

Quantum Electron. (1)

I. A. Bufetov, V. V. Dudin, A. V. Shubin, A. K. Senatorov, E. M. Dianov, A. B. Grudinin, S. E. Goncharov, I. D. Zalevskii, A. N. Guryanov, M. V. Yashkov, A. A. Umnikov, and N. N. Vechkanov, “Efficient 0.9μm neodymium-doped single-mode fibre laser,” Quantum Electron. 33(12), 1035–1037 (2003).
[Crossref]

Other (3)

M. J. Soderlund and S. K. T. Tammela, “A depressed-index cladding filter for suppressing 1.06μm emission in a Nd-doped silica fiber amplifier,” in Proceedings Optical Fiber Communication Conference (IEEE, 2004), pp. 3–5.

E. Stiles, “New developments in IPG fiber laser technology,” in 5th International Workshop on Fiber Lasers (2009).

I. P. G. Photonics, YLS series, http://www.ipgphotonics.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the waveguide. Open circles are the down-doped PCF lattice, filled circles are resonant out-couplers. The core is comprised of seven cells index matched to the background glass.
Fig. 2
Fig. 2 Calculated relative effective indices of the core mode (red), the space-filling mode of an infinite PCF lattice (blue, dashed), and the resonant mode a single GRIN inclusion in the PCF lattice. The core confinement loss is plotted on the second axis.
Fig. 3
Fig. 3 Calculated core mode loss for straight and coiled fibers. The block band contrast in coiled fiber is reduced due to shifts in the GRIN node effective indices, and it is wider.
Fig. 4
Fig. 4 Calculated loss spectrum for different variations of the leakage structures.
Fig. 5
Fig. 5 (a) One of the core canes, with a diameter of about 1.3 mm, and (b) the final drawn fiber, of 225 μm diameter.
Fig. 6
Fig. 6 Core attenuation measured on a single clad fiber. Two lengths of fiber were used to measure the block band (red) and background (blue). Also shown is the calculated ideal block band for a straight fiber.
Fig. 7
Fig. 7 Measured cladding absorption around the pump wavelengths for the final double clad fiber.
Fig. 8
Fig. 8 Pump light at 808 nm transmitted by 30 m long fiber.
Fig. 9
Fig. 9 Nd fiber laser setup schematic.
Fig. 10
Fig. 10 Nd fiber laser power and efficiency pumped at 808 nm.
Fig. 11
Fig. 11 Nd fiber laser spectrum, with high contrast between transitions.
Fig. 12
Fig. 12 Beam quality of the 808 nm pumped Nd laser at 925 nm.
Fig. 13
Fig. 13 Dual wavelength pumped Nd fiber laser output.

Metrics