Abstract

Balancing the accuracy and speed for 3D surface measurement of object is crucial in many important applications. Binary encoding pattern utilizing the high-speed image switching rate of digital mirror device (DMD)-based projector could be used as the candidate for fast even high-speed 3D measurement, but current most schemes only enable the measurement speed, which limit their application scopes. In this paper, we present a binary encoding method and develop an experimental system aiming to solve such a situation. Our approach encodes one computer-generated standard 8 bit sinusoidal fringe pattern into multiple binary patterns (sequence) with designed temporal-spatial binary encoding tactics. The binary pattern sequence is then high-speed and in-focus projected onto the surface of tested object, and then captured by means of temporal-integration imaging to form one sinusoidal fringe image. Further the combination of phase-shifting technique and temporal phase unwrapping algorithm leads to fast and accurate 3D measurement. The systematic accuracy better than 0.08mm is achievable. The measurement results with mask and palm are given to confirm the feasibility.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of temporal-spatial binary pattern projection for 3D shape acquisition

Pei Zhou, Jiangping Zhu, Xianyu Su, Zhisheng You, Hailong Jing, Chao Xiao, and Min Zhong
Appl. Opt. 56(11) 2995-3003 (2017)

Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns

Shijie Feng, Qian Chen, Chao Zuo, Tianyang Tao, Yan Hu, and Anand Asundi
Opt. Express 25(2) 540-559 (2017)

High-speed triangular pattern phase-shifting 3D measurement based on the motion blur method

Huijie Zhao, Xiaochun Diao, Hongzhi Jiang, and Xudong Li
Opt. Express 25(8) 9171-9185 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  2. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  3. S. Zhang, “Recent progresses on real time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  4. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43(14), 2906–2914 (2004).
    [Crossref] [PubMed]
  5. T. Hoang, B. Pan, D. Nguyen, and Z. Wang, “Generic gamma correction for accuracy enhancement in fringe-projection profilometry,” Opt. Lett. 35(12), 1992–1994 (2010).
    [Crossref] [PubMed]
  6. B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
    [Crossref]
  7. C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
    [Crossref]
  8. W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
    [Crossref]
  9. Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51(27), 6631–6636 (2012).
    [Crossref] [PubMed]
  10. Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35(24), 4121–4123 (2010).
    [Crossref] [PubMed]
  11. J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Lasers Eng. 51(6), 790–795 (2013).
    [Crossref]
  12. W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38(4), 540–542 (2013).
    [Crossref] [PubMed]
  13. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
    [Crossref] [PubMed]
  14. X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
    [Crossref]
  15. G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3D fringe projection,” Opt. Lett. 35(21), 3682–3684 (2010).
    [Crossref] [PubMed]
  16. L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36(23), 4518–4520 (2011).
    [Crossref] [PubMed]
  17. G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, “Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms,” Appl. Opt. 50(2), 147–154 (2011).
    [Crossref] [PubMed]
  18. G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, J. L. Flores, and J. A. Ferrari, “Color encoding of binary fringes for gamma correction in 3-D profiling,” Opt. Lett. 37(8), 1325–1327 (2012).
    [Crossref] [PubMed]
  19. J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
    [Crossref]
  20. Z. Y. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  21. http://www.vision.caltech.edu/bouguetj/calib_doc/ .
  22. C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
    [Crossref]
  23. VDI/VDE 2634 Blatt 2: 2002–08 Optische 3D-Messsysteme;Systeme mit flachenhafter Antastung.Berlin:Beuth Verlag.
  24. Y. L. Xiao, X. Su, W. Chen, and Y. Liu, “Three-dimensional shape measurement of aspheric mirrors with fringe reflection photogrammetry,” Appl. Opt. 51(4), 457–464 (2012).
    [Crossref] [PubMed]

2016 (1)

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

2015 (1)

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

2014 (1)

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

2013 (3)

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Lasers Eng. 51(6), 790–795 (2013).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38(4), 540–542 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (4)

2010 (5)

2004 (1)

2000 (1)

Z. Y. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1992 (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Alonso, J. R.

Asundi, A.

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Ayubi, G. A.

Ayubi, J. A.

Chen, M.

Chen, Q.

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Chen, W.

Dai, J.

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Lasers Eng. 51(6), 790–795 (2013).
[Crossref]

Dai, J. F.

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

Di Martino, J. M.

Ekstrand, L.

Feng, F. X.

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Feng, S. J.

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Fernández, A.

Ferrari, J. A.

Flores, J. L.

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Gu, G. H.

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Guo, H.

He, H.

Hoang, T.

Huang, L.

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Li, B. W.

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

Li, R. B.

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Liu, Y.

Liu, Y. K.

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

Lohry, W.

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38(4), 540–542 (2013).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

Martino, J. M. D.

Nguyen, D.

Pan, B.

Perciante, C. D.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Shen, G. C.

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Su, X.

Su, X. Y.

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

Su, X.-Y.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

von Bally, G.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Vukicevic, D.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Wang, Y.

Wang, Y. J.

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

Wang, Z.

Xiao, Y. L.

You, Z. S.

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

Zhang, M. L.

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Zhang, S.

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Lasers Eng. 51(6), 790–795 (2013).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38(4), 540–542 (2013).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51(27), 6631–6636 (2012).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
[Crossref] [PubMed]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36(23), 4518–4520 (2011).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35(24), 4121–4123 (2010).
[Crossref] [PubMed]

S. Zhang, “Recent progresses on real time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhou, W.-S.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Zhu, J. P.

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

Zuo, C.

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Y. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Opt. Commun. (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Opt. Eng. (1)

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54(5), 054108 (2015).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (7)

C. Zuo, L. Huang, M. L. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

S. Zhang, “Recent progresses on real time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54(1), 236–246 (2014).
[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Lasers Eng. 51(6), 790–795 (2013).
[Crossref]

Opt. Lett. (6)

Other (2)

VDI/VDE 2634 Blatt 2: 2002–08 Optische 3D-Messsysteme;Systeme mit flachenhafter Antastung.Berlin:Beuth Verlag.

http://www.vision.caltech.edu/bouguetj/calib_doc/ .

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (1040 KB)      in-focus project the binary encoding fringe pattern sequences at projection rate ~10Hz
» Visualization 2: MP4 (1251 KB)      fast scanning at 480Hz

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flowchart of generation of sinusoidal fringe image (a) ; (b) the binary fringe pattern sequences with period 76pixels, K = 4 and phase shifting step N = 4 (only three periods width is visible for illustration); (c) sinusoidal fringe image.

Fig. 2
Fig. 2

(a)framework of binocular vision based 3D measurement system using TSBE structured illumination; (b)experimental system; (c) the calibration target. Visualization 1 shows the in-focus projection at ~10Hz. Visualization 2 shows the fast scanning at 480Hz.

Fig. 3
Fig. 3

(a)-(c)captured deformed fringe images from left camera and (a')-(c') from right camera. The tested object is a mask placed on a holder. The work distance is about 810mm from the projector.

Fig. 4
Fig. 4

Captured deformed fringe images. (a)-(c) from left camera and (a')-(c') from right camera. The tested object is the author's palm. The work distance is 700mm from the projector.

Fig. 5
Fig. 5

3D reconstruction results (point cloud without any post-processing) of tested mask observed from different perspectives.

Fig. 6
Fig. 6

3D reconstruction results (point cloud without any post-processing) of the author's palm with different perspectives.

Fig. 7
Fig. 7

Details of 3D reconstruction results of mask and palm. (a) Mask and (b) palm. The details of “Ω” shaped on the mask and palmprint on the palm are still visible.

Tables (2)

Tables Icon

Table 1 Evaluation results of ceramic plate (Unit: mm)

Tables Icon

Table 2 Evaluation results of dumbbell gauge (Unit: mm)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I(u,v)= { C(u,v)+D(u,v)cos(2πu/P) } γ
I(u,v)=C(u,v)+D(u,v)cos(2πu/P)
T k = 2k1 2K ( k=1,2,3,,K )
H= 1 30 [ - - * 4 3 2 3 4 3 2 1 2 3 2 1 ]
I M k (u,v)= I k (u,v)+ m,nL [H(m,n) E k (um,vn)]
E k (u,v)={ I M k (u,v)k/K,if I M k (u,v)> T k I M k (u,v)(k1)/K,if I M k (u,v) T k
E 1 (u,v)={ I M 1 (u,v)1/4,if I M 1 (u,v)>1/8 I M 1 (u,v)0,if I M 1 (u,v)1/8
E 2 (u,v)={ I M 2 (u,v)1/2,if I M 2 (u,v)>3/8 I M 2 (u,v)1/4,if I M 2 (u,v)3/8
E 3 (u,v)={ I M 3 (u,v)3/4,if I M 3 (u,v)>5/8 I M 3 (u,v)1/2,if I M 3 (u,v)5/8
E 4 (u,v)={ I M 4 (u,v)1,if I M 4 (u,v)>7/8 I M 4 (u,v)3/4,if I M 4 (u,v)7/8
I m c (u,v)=C(u,v)+D(u,v)cos[φ(u,v)+2mπ/N],(m=0,2,3,...,N1.)
φ w (u,v)= tan 1 [ m=0 N I m c (u,v) sin(2mπ/N) m=0 N I m c (u,v) cos(2mπ/N) ]
{ φ 1 (u,v)= φ w 1 (u,v), φ 2 (u,v)= φ w 2 (u,v)+2π×{ round[ n 2 φ 1 (u,v) φ w 2 (u,v) 2π ] }, φ 3 (u,v)= φ w 3 (u,v)+2π×{ round[ n 3 / n 2 φ 2 (u,v) φ w 3 (u,v) 2π ] }.

Metrics