Abstract

Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi foci with diffraction limited resolution

Erik H. Waller and Georg von Freymann
Opt. Express 21(18) 21708-21713 (2013)

Wavefront correction of spatial light modulators using an optical vortex image

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte
Opt. Express 15(9) 5801-5808 (2007)

Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor

Carol López-Quesada, Jordi Andilla, and Estela Martín-Badosa
Appl. Opt. 48(6) 1084-1090 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
    [Crossref]
  2. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  4. S. W. Hell and J. Wichman, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion-microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  5. S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B. 60(5), 495–497 (1995).
    [Crossref]
  6. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
    [Crossref] [PubMed]
  7. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref] [PubMed]
  8. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614–624 (2011).
    [Crossref]
  9. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  10. M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
    [Crossref]
  11. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11(2), 158–166 (2003).
    [Crossref] [PubMed]
  12. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
    [Crossref]
  13. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
    [Crossref]
  14. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
    [Crossref]
  15. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
    [Crossref] [PubMed]
  16. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. P. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [Crossref] [PubMed]
  17. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
    [Crossref] [PubMed]
  18. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [Crossref] [PubMed]
  19. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
    [Crossref]
  20. E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
    [Crossref] [PubMed]
  21. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29(19), 2270–2272 (2004).
    [Crossref] [PubMed]
  22. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
    [Crossref] [PubMed]
  23. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2007).
    [Crossref]
  24. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics 5, 335–342 (2011).
    [Crossref]
  25. A. Jesacher, C. Maurer, S. Fürhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Comm. 281(8), 2207–2212 (2008).
    [Crossref]
  26. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [Crossref] [PubMed]
  27. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high effciency,” Opt. Express 16(7), 4479–4486 (2008).
    [Crossref] [PubMed]
  28. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
    [Crossref] [PubMed]
  29. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
    [Crossref]
  30. H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
    [Crossref]
  31. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).
  32. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
    [Crossref]
  33. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32(10), 1737–1746 (1993).
    [Crossref] [PubMed]
  34. D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).
  35. R. G. Lyon, J. E. Dorband, and J. M. Hollis, “Hubble space telescope faint object camera calculated point-spread functions,” Appl. Opt. 36(8), 1752–1765 (1997).
    [Crossref] [PubMed]
  36. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref]
  37. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
    [Crossref]
  38. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28(10), 801–803 (2003).
    [Crossref] [PubMed]
  39. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37(4), 470–472 (2012).
    [Crossref] [PubMed]
  40. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16(7), 4901–4917 (2008).
    [Crossref] [PubMed]
  41. D. Panneton, G. St-Onge, M. Piché, and S. Thibault, “Exact vectorial model for nonparaxial focusing by arbitrary axisymmetric surfaces,” J. Opt. Soc. Am. A 33(5), 801–809 (2016).
    [Crossref]
  42. S. N. Khonina, “Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions,” Opt. Eng. 52(9), 091711 (2013).
    [Crossref]

2016 (1)

2015 (4)

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
[Crossref]

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

2013 (4)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

S. N. Khonina, “Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions,” Opt. Eng. 52(9), 091711 (2013).
[Crossref]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

2010 (2)

2008 (5)

2007 (3)

2006 (1)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

2005 (2)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
[Crossref]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

2004 (2)

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29(19), 2270–2272 (2004).
[Crossref] [PubMed]

2003 (3)

2000 (2)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

1999 (1)

1998 (1)

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

1997 (1)

1996 (1)

D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).

1995 (1)

S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B. 60(5), 495–497 (1995).
[Crossref]

1994 (1)

1993 (1)

1982 (1)

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).

Acton, D. S.

D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).

Agard, D. A.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28(10), 801–803 (2003).
[Crossref] [PubMed]

Andresen, P.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

Bernet, S.

Booth, M. J.

Boyer, V.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Brakenhoff, G. J.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

Buist, H.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

Campos, J.

Cassettari, D.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Chandrashekar, C. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Chichkov, B. N.

Chumak, A. V.

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics 5, 335–342 (2011).
[Crossref]

Clark, R. L.

Cole, D. G.

Cooper, J.

Cottrell, D. M.

Courtial, J.

Daria, V. R.

Davis, J. A.

Deb, A. B.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
[Crossref]

Dholakia, K.

Dorband, J. E.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

Fienup, J. R.

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

Foot, C. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Foreman, M. R.

Freymann, G. von

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

Fricke, M.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

Fürhapter, S.

A. Jesacher, C. Maurer, S. Fürhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Comm. 281(8), 2207–2212 (2008).
[Crossref]

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).

Glückstad, J.

Godun, R. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Gonsalves, R. A.

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[Crossref]

Grier, D. G.

Gustafsson, M. G. L.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28(10), 801–803 (2003).
[Crossref] [PubMed]

Hanser, B. M.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

Hanser, M.

Hashimoto, T.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B. 60(5), 495–497 (1995).
[Crossref]

S. W. Hell and J. Wichman, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion-microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hellweg, D.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

Hillebrands, B.

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

Hinze, U.

Hirayama, Y.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Hollis, J. M.

Hrelescu, C.

Inada, H.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Jacak, J.

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Jenness, N. J.

Jesacher, A.

Johannes, M. S.

Jordan, P.

Katzmann, J.

Kelemen, L.

Khonina, S. N.

S. N. Khonina, “Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions,” Opt. Eng. 52(9), 091711 (2013).
[Crossref]

Klar, T. A.

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Koch, J.

Konno, M.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B. 60(5), 495–497 (1995).
[Crossref]

Kuang, C.

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

Laczik, Z. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Ladavac, K.

Langford, N. K.

Langner, T.

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

Leach, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
[Crossref]

Lee, S.

Liu, X.

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

Lyon, R. G.

Ma, Y.

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

Maurer, C.

McGloin, D.

Melville, H.

Metcalf, B. J.

Moreno, I.

Müller, M.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

Munro, P. R. T.

Nakamura, K.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Namekawa, R.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Nielsen, T.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

Obata, K.

Ormos, P.

Padgett, M.

Padgett, M. J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
[Crossref]

Padgett, M. P.

Panneton, D.

Piché, M.

Piestun, R.

Polin, M.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
[Crossref]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
[Crossref] [PubMed]

Ritsch-Marte, M.

Rodrigo, P. J.

Roichman, Y.

Salter, P. S.

Sato, T.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).

Schmidt, W.

D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).

Schonbrun, E.

Schwaighofer, A.

Sedat, J. W.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28(10), 801–803 (2003).
[Crossref] [PubMed]

Sherif, S. S.

Shichiji, T.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Sibbett, W.

Simmonds, R. D.

Smirne, G.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Soltau, D.

D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).

Spalding, G. C.

Spring, J. B.

Squier, J.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

St-Onge, G.

Suzuki, Y.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Tamura, K.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Terauchi, D.

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Thibault, S.

Thomas-Peter, N.

Török, P.

Valkai, S.

Vasyuchka, V. I.

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

Vogel, M.

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

von Freymann, G.

Waller, E. H.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
[Crossref]

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[Crossref] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
[Crossref] [PubMed]

Walmsley, I. A.

Wang, Y.

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614–624 (2011).
[Crossref]

Wichman, J.

Wollhofen, R.

Wulff, K. D.

Yzuel, M. J.

Adv. Optical. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-dimensional µ-printing: an enabling technology,” Adv. Optical. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Appl. Microsc. (1)

H. Inada, Y. Hirayama, K. Tamura, D. Terauchi, R. Namekawa, T. Shichiji, T. Sato, Y. Suzuki, M. Konno, K. Nakamura, and T. Hashimoto, “High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope,” Appl. Microsc.,  45(1), 1–8 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B. (1)

S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B. 60(5), 495–497 (1995).
[Crossref]

Astron. Astrophys. (1)

D. S. Acton, D. Soltau, and W. Schmidt, “Full-field wavefront measurements with phase diversity,” Astron. Astrophys. 309, 661–672 (1996).

Front. Optoelectron. (1)

Y. Fang, C. Kuang, Y. Ma, Y. Wang, and X. Liu, “Resolution and contrast enhancements of optical microscope based on point-spread-function engineering,” Front. Optoelectron. 8(2), 152–162 (2015).
[Crossref]

J. Microscopy (3)

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microscopy 192(2), 217–226 (1998).
[Crossref]

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microscopy 201(3), 368–376 (2000).
[Crossref]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microscopy 216(1), 32–48 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Nature Photonics (1)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics 5, 335–342 (2011).
[Crossref]

Nature Physics (1)

M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hillebrands, and G. von Freymann, “Optically reconfigurable magnetic materials,” Nature Physics 11, 487–491 (2015).
[Crossref]

New J. of Phys. (1)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys. 7, 1–11 (2005).
[Crossref]

Opt. Comm. (1)

A. Jesacher, C. Maurer, S. Fürhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Comm. 281(8), 2207–2212 (2008).
[Crossref]

Opt. Eng. (2)

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21(5), 215829 (1982).
[Crossref]

S. N. Khonina, “Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions,” Opt. Eng. 52(9), 091711 (2013).
[Crossref]

Opt. Express (14)

M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16(7), 4901–4917 (2008).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high effciency,” Opt. Express 16(7), 4479–4486 (2008).
[Crossref] [PubMed]

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
[Crossref] [PubMed]

E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2007).
[Crossref]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11(2), 158–166 (2003).
[Crossref] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
[Crossref] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. P. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
[Crossref] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[Crossref] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[Crossref] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20(22), 24949–24956 (2012).
[Crossref] [PubMed]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).

Phys. Rev. A (1)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73(3), 1–4 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the experimental setup. The beam path, its main optical components and the scanning procedure are depicted.
Fig. 2
Fig. 2 Scheme of the algorithm. The algorithm starts with the initial amplitude and phase pattern of a lateral-double-spot. Replacing the magnitude in Fourier- and real-space, respectively, retrieves the phase information PGSA containing all aberrations of the system. In this example, seven equidistant slices, separated by 75 nm and centered around the focal plane, are sufficient for aberration compensation.
Fig. 3
Fig. 3 Experimental results. Major aberrations present in a) a TEM00 mode, b) a doughnut mode, c) a slit mode, d) a lateral-double-spot mode, e) an axial-double-spot mode, and f) a six-spots mode are compensated. The gray, blue (dotted) and red (dashed) colored lines indicate the intensity cross-sections shown in Fig. 4. The respective phase patterns used are shown in the upper left corner of each laser mode. The scale bars correspond to 500 nm, respectively.
Fig. 4
Fig. 4 Intensity cross-sections of the above described laser modes (Fig. 3 a) – f)). The gray color indicates the ‘ideal PSF’-case, blue (dotted) and red (dashed) represent the ‘initial’-and ‘corrected PSF’-cases, respectively.
Fig. 5
Fig. 5 Intensity mean square error as function of the algorithm’s iterations within the first cycle of the doughnut mode’s aberration compensation (left). On the right side the improvement (correlation coefficient) of this mode is shown as function of the amount of cycles.

Tables (1)

Tables Icon

Table 1 Criteria of mode quality. The most crucial quality parameters for the above described laser modes (Fig. 3 a)–f)) are depicted. ‘Aspect ratio’ represents the ratio of the axial and lateral FWHM, whereas ‘min. intensity’ means the minimal intensity in the center of the STED-relevant laser modes. Here, the initial PSF values are not meaningful but listed in brackets for the sake of completeness.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E pup ( k x , k y ) = A start ( k x , k y ) exp [ i P start ( k x , k y ) ] ,
k z ( k x , k y ) = ( 2 π n / λ ) 2 ( k x 2 + k y 2 )
| C C | = | Σ m Σ n ( A scan m n A ¯ scan ) ( A ideal m n A ¯ ideal ) [ Σ m Σ n ( A scan m n A ¯ scan ) 2 ] [ Σ m Σ n ( A ideal m n A ¯ ideal ) 2 ] | ,
H SLM j = { mod [ P j 1 ( P GSA j 1 P start ) + P blaze , 2 π ] π } s inc 2 ( ( 1 A start ) π ) + π .
H SLM 1 = [ mod ( P start + P blaze , 2 π ) π ] s inc 2 ( ( 1 A start ) π ) + π .
| C C ¯ | = 1 2 p = 1 2 | C C p | .

Metrics