Abstract

We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line

Daniele Brida, Cristian Manzoni, and Giulio Cerullo
Opt. Lett. 37(15) 3027-3029 (2012)

2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line

Julien Réhault, Margherita Maiuri, Cristian Manzoni, Daniele Brida, Jan Helbing, and Giulio Cerullo
Opt. Express 22(8) 9063-9072 (2014)

Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration

Weida Zhu, Rui Wang, Chunfeng Zhang, Guodong Wang, Yunlong Liu, Wei Zhao, Xingcan Dai, Xiaoyong Wang, Giulio Cerullo, Steven Cundiff, and Min Xiao
Opt. Express 25(18) 21115-21126 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
    [Crossref] [PubMed]
  2. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51(1), 691–729 (2000).
    [Crossref] [PubMed]
  3. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
    [Crossref]
  4. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  5. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
    [Crossref] [PubMed]
  6. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15(25), 16681–16689 (2007).
    [Crossref] [PubMed]
  7. J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
    [Crossref] [PubMed]
  8. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
    [Crossref] [PubMed]
  9. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
    [Crossref] [PubMed]
  10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
    [Crossref] [PubMed]
  11. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
    [Crossref] [PubMed]
  12. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref] [PubMed]
  13. J. Jiang and S. Mukamel, “Two-Dimensional Ultraviolet (2DUV) Spectroscopic Tools for Identifying Fibrillation Propensity of Protein Residue Sequences,” Angew. Chem. Int. Ed. Engl. 49(50), 9666–9669 (2010).
    [Crossref] [PubMed]
  14. Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
    [Crossref] [PubMed]
  15. A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
    [Crossref] [PubMed]
  16. B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
    [Crossref] [PubMed]
  17. B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
    [Crossref] [PubMed]
  18. U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
    [Crossref] [PubMed]
  19. V. Prokhorenko, A. Picchiotti, S. Maneshi, and D. Miller, “Broadband Electronic Two-Dimensional Spectroscopy in the Deep UV,” in 19th International Conference on Ultrafast Phenomena, OSA Technical Digest (online) (Optical Society of America, 2014), paper 09.Wed.A.4.
    [Crossref]
  20. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
    [Crossref] [PubMed]
  21. C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
    [Crossref] [PubMed]
  22. N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
    [Crossref]
  23. G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
    [Crossref] [PubMed]
  24. C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
    [Crossref] [PubMed]
  25. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  26. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  27. R. B. Varillas, A. Candeo, D. Viola, M. Garavelli, S. De Silvestri, G. Cerullo, and C. Manzoni, “Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation,” Opt. Lett. 39(13), 3849–3852 (2014).
    [Crossref] [PubMed]
  28. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26(15), 1155–1157 (2001).
    [Crossref] [PubMed]
  29. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [Crossref] [PubMed]
  30. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  31. H. S. Tan, E. Schreiber, and W. S. Warren, “High-resolution indirect pulse shaping by parametric transfer,” Opt. Lett. 27(6), 439–441 (2002).
    [Crossref] [PubMed]
  32. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]
  33. S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
    [Crossref]
  34. S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13(17), 6345–6353 (2005).
    [Crossref] [PubMed]
  35. J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31(13), 2063–2065 (2006).
    [Crossref] [PubMed]
  36. R. Borrego-Varillas, A. Oriana, F. Branchi, S. De Silvestri, G. Cerullo, and C. Manzoni, “Optimized ancillae generation for ultra-broadband two-dimensional spectral-shearing interferometry,” J. Opt. Soc. Am. B 32(9), 1851–1855 (2015).
    [Crossref]
  37. P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).
  38. M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
    [Crossref]

2016 (1)

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

R. B. Varillas, A. Candeo, D. Viola, M. Garavelli, S. De Silvestri, G. Cerullo, and C. Manzoni, “Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation,” Opt. Lett. 39(13), 3849–3852 (2014).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

2013 (2)

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

2012 (5)

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

2011 (1)

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
[Crossref] [PubMed]

2010 (5)

U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

J. Jiang and S. Mukamel, “Two-Dimensional Ultraviolet (2DUV) Spectroscopic Tools for Identifying Fibrillation Propensity of Protein Residue Sequences,” Angew. Chem. Int. Ed. Engl. 49(50), 9666–9669 (2010).
[Crossref] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

2009 (2)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
[Crossref] [PubMed]

2007 (4)

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15(25), 16681–16689 (2007).
[Crossref] [PubMed]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13(17), 6345–6353 (2005).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

2004 (2)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

2003 (1)

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51(1), 691–729 (2000).
[Crossref] [PubMed]

1995 (1)

Abramavicius, D.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Ahn, T.-K.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Akturk, S.

Angelow, G.

Auböck, G.

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

Birge, J. R.

Blancafort, L.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Borrego-Varillas, R.

Bowlan, P.

Branchi, F.

Brida, D.

Brixner, T.

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Buchvarov, I.

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Candeo, A.

Cerullo, G.

Cheng, Y.-C.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Chergui, M.

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

Chériaux, G.

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Consani, C.

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Cundiff, S. T.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Curmi, P. M. G.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Damrauer, N. H.

De Silvestri, S.

DeFlores, L. P.

Eikema, K. S. E.

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

Ell, R.

Engel, G. S.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Fiebig, T.

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

Fleming, G. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Foerster, M.

Fuller, F. D.

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

Gabolde, P.

Gallmann, L.

Garavelli, M.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

R. B. Varillas, A. Candeo, D. Viola, M. Garavelli, S. De Silvestri, G. Cerullo, and C. Manzoni, “Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation,” Opt. Lett. 39(13), 3849–3852 (2014).
[Crossref] [PubMed]

Giussani, A.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Grumstrup, E. M.

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Hauer, J.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

Jiang, J.

J. Jiang and S. Mukamel, “Two-Dimensional Ultraviolet (2DUV) Spectroscopic Tools for Identifying Fibrillation Propensity of Protein Residue Sequences,” Angew. Chem. Int. Ed. Engl. 49(50), 9666–9669 (2010).
[Crossref] [PubMed]

Joffre, M.

Kärtner, F. X.

Kauffmann, H. F.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Keller, U.

Kotur, M.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

Krebs, N.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Langhojer, F.

Lepetit, L.

Lewis, K. L. M.

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

Li, Q.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Maiuri, M.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Manzoni, C.

Matsika, S.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
[Crossref] [PubMed]

Matuschek, N.

McGresham, K.

Midorikawa, K.

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Milota, F.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Modrakowski, C.

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

Montgomery, M. A.

Moran, A. M.

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
[Crossref] [PubMed]

Mukamel, S.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

J. Jiang and S. Mukamel, “Two-Dimensional Ultraviolet (2DUV) Spectroscopic Tools for Identifying Fibrillation Propensity of Protein Residue Sequences,” Angew. Chem. Int. Ed. Engl. 49(50), 9666–9669 (2010).
[Crossref] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51(1), 691–729 (2000).
[Crossref] [PubMed]

Myers, J. A.

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

Nabekawa, Y.

Nelson, K. A.

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Nemeth, A.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Nenov, A.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

Nicodemus, R. A.

Noom, D. W. E.

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

Nuernberger, P.

Obara, M.

Ogilvie, J. P.

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Oriana, A.

Pandurski, E.

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

Pugliesi, I.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Raytchev, M.

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Réhault, J.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Riedle, E.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Rivalta, I.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

Roca-Sanjuán, D.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Sándor, P.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

Scheuer, V.

Schleussner, C. F.

Scholes, G. D.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Schreiber, E.

Segarra-Martí, J.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Selig, U.

Shim, S. H.

Shimizu, S.

Shreenath, A.

Sperling, J.

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

Steinmeyer, G.

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Stiopkin, I. V.

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Tan, H. S.

Tekavec, P. A.

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

Tenner, V. T.

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

Tokmakoff, A.

Trebino, R.

Tschudi, T.

Tseng, C. H.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
[Crossref] [PubMed]

Turner, D. B.

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

van Mourik, F.

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

Varillas, R. B.

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Viola, D.

Voityuk, A. A.

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

Warren, W. S.

Weinacht, T. C.

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
[Crossref] [PubMed]

West, B. A.

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
[Crossref] [PubMed]

Wilk, K. E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Witte, S.

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

Womick, J. M.

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
[Crossref] [PubMed]

Wong, C. Y.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Zanni, M. T.

Zavelani-Rossi, M.

Angew. Chem. Int. Ed. Engl. (1)

J. Jiang and S. Mukamel, “Two-Dimensional Ultraviolet (2DUV) Spectroscopic Tools for Identifying Fibrillation Propensity of Protein Residue Sequences,” Angew. Chem. Int. Ed. Engl. 49(50), 9666–9669 (2010).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51(1), 691–729 (2000).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phase-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Chemistry (1)

Q. Li, A. Giussani, J. Segarra-Martí, A. Nenov, I. Rivalta, A. A. Voityuk, S. Mukamel, D. Roca-Sanjuán, M. Garavelli, and L. Blancafort, “Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate,” Chemistry 22(22), 7497–7507 (2016).
[Crossref] [PubMed]

IEEE J.S.T.Q. E (1)

P. A. Tekavec, K. L. M. Lewis, F. D. Fuller, J. A. Myers, and J. P. Ogilvie, “Toward Broad Bandwidth 2-D electronic Spectroscopy: Correction of Chirp From a Continuum Probe,” IEEE J.S.T.Q. E 18(1), 210–217 (2012).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (4)

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, “Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump−Probe Study,” J. Phys. Chem. A 107(23), 4592–4600 (2003).
[Crossref]

C. H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A 116(11), 2654–2661 (2012).
[Crossref] [PubMed]

B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A 115(31), 8630–8637 (2011).
[Crossref] [PubMed]

J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and Disorder in Molecular Nanotubes: A 2D Electronic Spectroscopy Study and First Comparison to a Microscopic Model,” J. Phys. Chem. A 114(32), 8179–8189 (2010).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (2)

B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

A. Nenov, I. Rivalta, G. Cerullo, S. Mukamel, and M. Garavelli, “Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian,” J. Phys. Chem. Lett. 5(4), 767–771 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

S. Witte, V. T. Tenner, D. W. E. Noom, and K. S. E. Eikema, “Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths,” Light Sci. Appl. 3(3), e163 (2014).
[Crossref]

Nature (4)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466(7310), 1089–1092 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250 – 720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31(13), 2063–2065 (2006).
[Crossref] [PubMed]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26(15), 1155–1157 (2001).
[Crossref] [PubMed]

H. S. Tan, E. Schreiber, and W. S. Warren, “High-resolution indirect pulse shaping by parametric transfer,” Opt. Lett. 27(6), 439–441 (2002).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37(12), 2337–2339 (2012).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

R. B. Varillas, A. Candeo, D. Viola, M. Garavelli, S. De Silvestri, G. Cerullo, and C. Manzoni, “Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation,” Opt. Lett. 39(13), 3849–3852 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Science (2)

C. Consani, G. Auböck, F. van Mourik, and M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339(6127), 1586–1589 (2013).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Other (2)

V. Prokhorenko, A. Picchiotti, S. Maneshi, and D. Miller, “Broadband Electronic Two-Dimensional Spectroscopy in the Deep UV,” in 19th International Conference on Ultrafast Phenomena, OSA Technical Digest (online) (Optical Society of America, 2014), paper 09.Wed.A.4.
[Crossref]

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental 2DUV setup. DCMs: two pairs of double chirped mirrors used to compress the NOPA and pre-compensate for the TWINS dispersion, respectively; SFG: sum-frequency generation; DL: delay line; WLG: white-light generation.
Fig. 2
Fig. 2 (a) Spectral intensity (blue line) and phase (black line) and (b) temporal intensity profiles of each UV pulse replica. Dashed black line of panel (b) corresponds to a TL pulse.
Fig. 3
Fig. 3 (a) Spectrally-resolved linear autocorrelation of the UV pulses. (b) Autocorrelation trace obtained by integrating the 2D autocorrelation map along the wavelength axis. (c) Power spectra of the UV pulses. Black dashed line: measured spectrum obtained by integrating the 2D autocorrelation map along the motor position axis; red solid line: spectrum from the FT of the autocorrelation trace. (d) Blue and red: zoom (between the dashed vertical lines of panel (b)) of two correlation traces acquired at 30 minutes distance.
Fig. 4
Fig. 4 (a) Sequence of UV spectral interference fringes acquired for 30 min at a fixed position of the wedges. (b) Interferogram of UV pulses (blue line, obtained as a cut of panel (a)) and of visible pulses from NOPA, blue-shifted by 375 THz (800 nm) (red line). (c) Phase fluctuations of the interferogram reported in (a). The delay fluctuation (right axis) is also reported for a carrier wavelength of 340 nm.
Fig. 5
Fig. 5 2DUV maps of pyrene probing in the visible (a-b) and the UV (c) range. (d) Dynamics at selected cross peaks showing the S2 →S1 internal conversion process. (e) Sketch of the electronic transitions in pyrene probed in our experiments.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ˜ 3 (ω) + E ˜ 2 (ω') E ˜ 1 (ωω')dω

Metrics