Abstract

In this study, the supercontinuum (SC) generation in a 1-m-long As2S3 fiber with a 200 μm core diameter was demonstrated experimentally. The high-purity As2S3 fiber we used exhibited very low optical loss with a background loss of approximately 0.1 dB/m at a wavelength of 2–5 μm. SC generation was studied by pumping the fiber at different wavelengths and different peak powers. A strong spectral broadening with a 30 dB spectral flatness spanning from 1.4 to 7.0 µm was obtained when the fiber was pumped with 150 fs short pulses at 5.0 µm. The SC generation in bent fiber was also studied. The result showed that the bending radius of the fiber will significantly affect the SC spectra bandwidth and the output power. The SC spectra in the used fiber could still be maintained when it was bent to a radius of 5 cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source

Jinmei Yao, Bin Zhang, Ke Yin, Linyong Yang, Jing Hou, and Qisheng Lu
Opt. Express 24(13) 15093-15100 (2016)

Multioctave infrared supercontinuum generation in large-core As2S3 fibers

Francis Théberge, Nicolas Thiré, Jean-François Daigle, Pierre Mathieu, Bruno E. Schmidt, Younès Messaddeq, Réal Vallée, and François Légaré
Opt. Lett. 39(22) 6474-6477 (2014)

1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power

Yi Yu, Bin Zhang, Xin Gai, Chengcheng Zhai, Sisheng Qi, Wei Guo, Zhiyong Yang, Rongping Wang, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies
Opt. Lett. 40(6) 1081-1084 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  2. R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
    [Crossref] [PubMed]
  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  4. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
    [Crossref] [PubMed]
  5. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
    [Crossref] [PubMed]
  6. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
    [Crossref] [PubMed]
  7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  9. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  10. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  11. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref] [PubMed]
  12. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref] [PubMed]
  13. W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
    [Crossref] [PubMed]
  14. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  15. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
    [Crossref] [PubMed]
  16. G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
    [Crossref] [PubMed]
  17. G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
    [Crossref]
  18. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
    [Crossref] [PubMed]
  19. A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
    [Crossref] [PubMed]
  20. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-Spanning Supercontinuum Generation in In Situ Tapered As2S3 Fiber Pumped by a Thulium-Doped Fiber Laser,” Opt. Lett. 38(15), 2865–2868 (2013).
    [Crossref] [PubMed]
  21. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-Spanning Infrared Supercontinuum Generation in Robust Chalcogenide Nanotapers Using Picosecond Pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
    [Crossref] [PubMed]
  22. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
    [Crossref] [PubMed]
  23. A. Ben Salem, R. Cherif, and M. Zghal, “Soliton-Self Compression in Highly Nonlinear Chalcogenide Photonic Nanowires with Ultralow Pulse Energy,” Opt. Express 19(21), 19955–19966 (2011).
    [Crossref] [PubMed]
  24. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref] [PubMed]
  25. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref] [PubMed]
  26. P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
    [Crossref]
  27. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [Crossref] [PubMed]
  28. F. Théberge, N. Thiré, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
    [Crossref] [PubMed]
  29. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
    [Crossref]
  30. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  31. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref] [PubMed]
  32. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
    [Crossref]
  33. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  34. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  35. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  36. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [Crossref] [PubMed]
  37. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
    [Crossref]
  38. G. P. Agrawal, Nonlinear Fiber Optics, 3nd ed. (Academic, San Diego, Calif., 2001).

2016 (2)

2015 (6)

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

2014 (7)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
[Crossref]

F. Théberge, N. Thiré, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (6)

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-Spanning Infrared Supercontinuum Generation in Robust Chalcogenide Nanotapers Using Picosecond Pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

2011 (3)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

A. Ben Salem, R. Cherif, and M. Zghal, “Soliton-Self Compression in Highly Nonlinear Chalcogenide Photonic Nanowires with Ultralow Pulse Energy,” Opt. Express 19(21), 19955–19966 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2003 (1)

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

2000 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abouraddy, A. F.

Aggarwal, I. D.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Agger, C.

Al-kadry, A.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Baker, C.

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Banaei, E. H.

Bang, O.

Ben Salem, A.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Brandon Shaw, L.

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Brilland, L.

Byer, R. L.

Caillaud, C.

Chaudhari, C.

Chen, F.

Cheng, T.

Cherif, R.

Choi, D. Y.

Choi, D.-Y.

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dai, S.

Dai, S. X.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Daigle, J. F.

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Delfyett, P. J.

Désévédavy, F.

Dianov, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

El Amraoui, M.

El-Amraoui, M.

Fatome, J.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fortier, C.

Freeman, M. J.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

Gao, W.

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Hasegawa, T.

Hou, J.

Huang, Y.

Islam, M. N.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Jules, J. C.

Kaufman, J. J.

Ke, K.

Keiding, S. R.

Khalilzadeh-Rezaie, F.

Kito, C.

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Koshiba, M.

Kubat, I.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Légaré, F.

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Liao, M.

Liu, Z.

Luo, B.

Luther-Davies, B.

Lyngsø, J. K.

Ma, P.

Madden, S.

Marandi, A.

Marquez, M. P.

Mathieu, P.

Matsumoto, M.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Méchin, D.

Messaddeq, Y.

Michalska, M.

Misumi, T.

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Møller, U.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monro, T. M.

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Nagasaka, K.

Nguyen, D.

Nguyen, V. Q.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nie, Q. H.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Ohishi, Y.

Ou, H.

Peale, R. E.

Petersen, C.

Petersen, C. R.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Piracha, M. U.

Plotnichenko, V. G.

Pureza, P. C.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Qi, S.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Qin, G.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Ranka, J. K.

Ren, H.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rochette, M.

Rudy, C. W.

Saitoh, K.

Sanghera, J. S.

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Sasaoka, E.

Schmidt, B. E.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shabahang, S.

Skripatchev, I.

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Smektala, F.

Steffensen, H.

Stentz, A. J.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sun, Y.

Suzuki, T.

Swiderski, J.

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, G.

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-Spanning Infrared Supercontinuum Generation in Robust Chalcogenide Nanotapers Using Picosecond Pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

Tao, G. M.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Tezuka, H.

Théberge, F.

Thiré, N.

Thøgersen, J.

Thomsen, C. L.

Troles, J.

Tuan, T. H.

Vallée, R.

Vodopyanov, K. L.

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Wang, R.

Wang, T.

Wang, X.

Wang, X. S.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Welsh, M. J.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Windeler, R. S.

Wu, Y.

Wu, Y. H.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Xia, C.

Xu, H.

Xu, Y.

Xue, G.

Xue, X.

Yan, X.

Yang, A.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yang, P. L.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Yang, W.

Yang, Z.

Yin, K.

Yu, Y.

Zghal, M.

Zhai, C.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Zhang, B.

Zhang, P.

Zhang, P. Q.

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

Zhang, Y.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhou, X.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low Loss, High NA Chalcogenide Glass Fibers for Broadband Mid-Infrared Supercontinuum Generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

J. Biomed. Opt. (1)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

J. Mod. Opt. (1)

P. L. Yang, P. Q. Zhang, S. X. Dai, Y. H. Wu, X. S. Wang, G. M. Tao, and Q. H. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62(9), 729–737 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (12)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref] [PubMed]

A. Ben Salem, R. Cherif, and M. Zghal, “Soliton-Self Compression in Highly Nonlinear Chalcogenide Photonic Nanowires with Ultralow Pulse Energy,” Opt. Express 19(21), 19955–19966 (2011).
[Crossref] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Opt. Lett. (13)

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-Spanning Supercontinuum Generation in In Situ Tapered As2S3 Fiber Pumped by a Thulium-Doped Fiber Laser,” Opt. Lett. 38(15), 2865–2868 (2013).
[Crossref] [PubMed]

F. Théberge, N. Thiré, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-Spanning Infrared Supercontinuum Generation in Robust Chalcogenide Nanotapers Using Picosecond Pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3nd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission loss of the 200 μm core As2S3 fiber.

Fig. 2
Fig. 2

The calculated effective refractive indices of the As2S3 core (black line) and the group velocity dispersion curves of the fiber (red curve). The inset was the intensity distribution of the LP01 mode in the fiber.

Fig. 3
Fig. 3

Experimental setup of the MIR SC generation measurement. The MIR pump source was generated with a noncollinear difference frequency generation (NDFG) unit pumped through an OPA. The pump was coupled into the fiber with calcium fluoride lens. The output SC from the fiber was injected into the input slit of a monochromator, and the boxcar integration system was used to improve the signal-to-noise ratio.

Fig. 4
Fig. 4

The SC spectra generated in 1 m As2S3 fiber pumped at different wavelengths. The red and black arrow represents the position of the pump pulse and that of the ZDW, respectively.

Fig. 5
Fig. 5

Spectra of the SC generated in 1 m As2S3 fiber at different pump powers.

Fig. 6
Fig. 6

(a) Simulation of the SC evolution when pumping with a peak power of 3 MW at 5 µm and (b) simulated SC spectrum with different fiber length, the black line is the experimentally obtained SC spectra at the end of the 1 m fiber.

Fig. 7
Fig. 7

(a) The normalized output power with the decrease of bending radius and (b) the measured spectra of the SC generated in straight and bent As2S3 fiber.

Metrics