Abstract

We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100-fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide mode.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
    [Crossref]
  2. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
    [Crossref] [PubMed]
  3. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
    [Crossref] [PubMed]
  4. J. N. Dash, R. Jha, J. Villatoro, and S. Dass, “Nano-displacement sensor based on photonic crystal fiber modal interferometer,” Opt. Lett. 40(4), 467–470 (2015).
    [Crossref] [PubMed]
  5. C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
    [Crossref]
  6. S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
    [Crossref] [PubMed]
  7. J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
    [Crossref] [PubMed]
  8. M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on SNOW ring resonators,” Opt. Express 19(18), 17575–17584 (2011).
    [Crossref] [PubMed]
  9. S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
    [Crossref] [PubMed]
  10. G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
    [Crossref] [PubMed]
  11. P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
    [Crossref] [PubMed]
  12. S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
    [Crossref] [PubMed]
  13. A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn. 4(4), 527–537 (2004).
    [Crossref] [PubMed]
  14. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [Crossref]
  15. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
    [Crossref] [PubMed]
  16. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  17. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  18. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
    [Crossref]
  19. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
    [Crossref] [PubMed]
  20. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
    [Crossref] [PubMed]
  21. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
    [Crossref] [PubMed]
  22. S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles,” Opt. Lett. 38(24), 5216–5219 (2013).
    [Crossref] [PubMed]
  23. S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
    [Crossref]
  24. J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
    [Crossref]
  25. S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
    [Crossref] [PubMed]
  26. S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
    [Crossref] [PubMed]
  27. S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
    [Crossref] [PubMed]
  28. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
    [Crossref] [PubMed]
  29. J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
    [Crossref] [PubMed]
  30. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  31. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  32. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  33. O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13(3), 796–800 (2005).
    [Crossref] [PubMed]
  34. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  35. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  36. S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
    [Crossref]
  37. Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
    [Crossref] [PubMed]
  38. Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).
  39. W. Thrift, C. Nguyen, M. Darvishzadeh-Varcheie, N. Sharac, R. Sanderson, F. Capolino, and R. Ragan, “Bridging the Gap between Crosslinking Chemistry and Directed Assembly of Metasurfaces Using Electrohydrodynamic Flow,” ArXiv:160906964 [Cond-Mat Physicsphysics] (2016).
  40. R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
    [Crossref] [PubMed]
  41. J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
    [Crossref] [PubMed]
  42. V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
    [Crossref] [PubMed]
  43. I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
    [Crossref] [PubMed]
  44. Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
    [Crossref]
  45. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
    [Crossref] [PubMed]
  47. W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
    [Crossref]
  48. M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
    [Crossref]
  49. M. D. Varcheie, Q. Zhao, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement and optical trapping with plasmonic nano antennas on silicon-based waveguides,” in Radio Science Meeting (Joint with AP-S Symposium), 2015 USNC-URSI (2015), pp. 350–350.
    [Crossref]

2015 (5)

J. N. Dash, R. Jha, J. Villatoro, and S. Dass, “Nano-displacement sensor based on photonic crystal fiber modal interferometer,” Opt. Lett. 40(4), 467–470 (2015).
[Crossref] [PubMed]

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

2014 (6)

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (7)

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref] [PubMed]

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
[Crossref] [PubMed]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
[Crossref] [PubMed]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

2011 (7)

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on SNOW ring resonators,” Opt. Express 19(18), 17575–17584 (2011).
[Crossref] [PubMed]

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

2010 (3)

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2009 (2)

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
[Crossref] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

2008 (3)

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

2006 (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn. 4(4), 527–537 (2004).
[Crossref] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

1997 (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1994 (1)

C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ackermann, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Adams, S. M.

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
[Crossref] [PubMed]

S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
[Crossref] [PubMed]

Aizpurua, J.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Alic, N.

Alitalo, P.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

Anantram, M. P.

Bao, J.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Bao, M. H.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Batty, W. J.

Baumberg, J. J.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Bezares, F. J.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

Bhattacharjee, A.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Böhm, P.

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Boyraz, O.

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13(3), 796–800 (2005).
[Crossref] [PubMed]

Cai, H.

Caldwell, J. D.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

Campione, S.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
[Crossref] [PubMed]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles,” Opt. Lett. 38(24), 5216–5219 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

Capasso, F.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Capolino, F.

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles,” Opt. Lett. 38(24), 5216–5219 (2013).
[Crossref] [PubMed]

S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

Chen, C.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Chen, S.-Y.

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Cheung, S. C.

Choi, J. H.

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
[Crossref] [PubMed]

Choi, J. Y.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cialla, D.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Clarke, N.

Cronin, S. B.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

Culbertson, J. C.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Dam, B.

Darvishzadeh-Varcheie, M.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dash, J. N.

Dass, S.

De Keersmaecker, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Dluhy, R. A.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Dörfer, T.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Duyne, R. P. V.

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn. 4(4), 527–537 (2004).
[Crossref] [PubMed]

Echternach, P. M.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Esteban, R.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Fainman, Y.

Fan, J. A.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Finkelstein, H.

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Fritzsche, W.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Fron, E.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Fu, L.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Goswami, G. K.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
[Crossref] [PubMed]

Guclu, C.

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles,” Opt. Lett. 38(24), 5216–5219 (2013).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn. 4(4), 527–537 (2004).
[Crossref] [PubMed]

Hattori, H. T.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

He, Y.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Hering, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Herrmann, L. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Hochbaum, A.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

Hofkens, J.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Huang, F. M.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

Huang, Y. P.

Hutchison, J. A.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Ikeda, K.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jagadish, C.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Jalali, B.

James, S. W.

Javahiraly, N.

Jha, R.

Ji, X. M.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, C.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Kamyab, L.

Kee, J. S.

Kenens, B.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Keyser, U. F.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Khorasaninejad, M.

Klimant, I.

C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, J.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Korposh, S.

Kwong, D. L.

Kwong, D.-L.

Lazarides, A. A.

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Lee, S.-W.

Lee, T.-C.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, Z.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Liedl, T.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Lin, Y. S.

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Liu, A. Q.

Liu, D. R.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Lo, G.-Q.

Lu, G.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Lu, Y.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

Luo, X.

Mahajan, S.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Mattheis, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Merget, F.

Meyrueis, P.

Minissale, S.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Mizuno, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Mock, J. J.

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Möller, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Muller, R. E.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Nanda, K. K.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
[Crossref] [PubMed]

Negri, P.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Negro, L. D.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nordlander, P.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Norton, S. M.

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Pandey, S.

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
[Crossref] [PubMed]

Park, M. K.

Parkinson, P.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Pavaskar, P.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Perrotton, C.

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Popp, J.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Preininger, C.

C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
[Crossref]

Premasiri, W. R.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Ragan, R.

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
[Crossref] [PubMed]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles,” Opt. Lett. 38(24), 5216–5219 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
[Crossref] [PubMed]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
[Crossref] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Rocha, S.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Romero-García, S.

Rösch, P.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Rostami, A.

Ruan, Q.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Saini, S. S.

Saperstein, R. E.

Schade, N. B.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Scherman, O. A.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Schneidewind, H.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Schreuders, H.

Schüller, V.

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Shao, L.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Sharac, N.

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

Shu, Y.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Shvets, G.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Sigle, D. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Slaman, M.

Smith, D. R.

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Song, J.

Stein, I. H.

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Steshenko, S.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

Su, L.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Tan, H. H.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Tatam, R. P.

Taylor, R. W.

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Thacker, V. V.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Theiss, J.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Thrift, W.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

Thubagere, A.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Tian, J.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Tinnefeld, P.

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Tompkins, S. M.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Topliss, S.

Tretyakov, S.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

Tripp, R. A.

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

Tsai, J. M.

Tu, X.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Uji-i, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Van Dorpe, P.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Villatoro, J.

Wang, J.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, T.

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

Wei, X.

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

Westerwaal, R. J.

Whiteson, K.

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

Witzens, J.

Wolfbeis, O. S.

C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
[Crossref]

Wu, C.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Wu, H.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Xiao, H.

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

Yan, B.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Yerci, S.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Yu, M.

Zhang, H.

Zhang, T.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Zhao, Q.

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

Zhao, X.

Zhong, F.

Zhou, J.

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

Ziegler, L. D.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[Crossref] [PubMed]

ACS Nano (3)

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

R. W. Taylor, T.-C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril “Glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Adv. Mater. (1)

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Anal. Chem. (2)

P. Negri, J. Y. Choi, C. Jones, S. M. Tompkins, R. A. Tripp, and R. A. Dluhy, “Identification of virulence determinants in influenza viruses,” Anal. Chem. 86(14), 6911–6917 (2014).
[Crossref] [PubMed]

C. Preininger, I. Klimant, and O. S. Wolfbeis, “Optical Fiber Sensor for Biological Oxygen Demand,” Anal. Chem. 66(11), 1841–1846 (1994).
[Crossref]

Appl. Phys. Lett. (1)

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

ChemPhysChem (1)

I. H. Stein, V. Schüller, P. Böhm, P. Tinnefeld, and T. Liedl, “Single-molecule FRET ruler based on rigid DNA origami blocks,” ChemPhysChem 12(3), 689–695 (2011).
[Crossref] [PubMed]

Expert Rev. Mol. Diagn. (1)

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn. 4(4), 527–537 (2004).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Int. J. Biol. Macromol. (1)

S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” Int. J. Biol. Macromol. 51(4), 583–589 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

J. Phys. Appl. Phys. (1)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. Appl. Phys. 45(30), 305102 (2012).
[Crossref]

Langmuir (1)

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir 29(13), 4242–4251 (2013).
[Crossref] [PubMed]

Nano Lett. (2)

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordlander, D. R. Liu, and F. Capasso, “DNA-Enabled Self-Assembly of Plasmonic Nanoclusters,” Nano Lett. 11(11), 4859–4864 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology 20(6), 065301 (2009).
[Crossref] [PubMed]

Nat. Commun. (2)

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Express (10)

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13(3), 796–800 (2005).
[Crossref] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

S. Campione, S. M. Adams, R. Ragan, and F. Capolino, “Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres,” Opt. Express 21(7), 7957–7973 (2013).
[Crossref] [PubMed]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
[Crossref] [PubMed]

M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on SNOW ring resonators,” Opt. Express 19(18), 17575–17584 (2011).
[Crossref] [PubMed]

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[Crossref] [PubMed]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[Crossref] [PubMed]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref] [PubMed]

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016607 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Plasmonics (1)

J. J. Mock, S. M. Norton, S.-Y. Chen, A. A. Lazarides, and D. R. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics 6(1), 113–124 (2011).
[Crossref]

Proc. SPIE (3)

Y. Huang, Q. Zhao, N. Sharac, R. Ragan, and O. Boyraz, “Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles,” Proc. SPIE 9503, Nonlinear Optics and Applications IX, 95030H (2015).

W. Thrift, A. Bhattacharjee, M. Darvishzadeh-Varcheie, Y. Lu, A. Hochbaum, F. Capolino, K. Whiteson, and R. Ragan, “Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds,” Proc. SPIE 9550, 95500B (2015).
[Crossref]

M. Darvishzadeh-Varcheie, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement with plasmonic nano-antennas on silicon-based waveguides,” Proc. SPIE 9547, 95473E (2015).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

X. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B Chem. 134(2), 687–693 (2008).
[Crossref]

Small (1)

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly,” Small 8(14), 2239–2249 (2012).
[Crossref] [PubMed]

Other (2)

M. D. Varcheie, Q. Zhao, C. Guclu, R. Ragan, O. Boyraz, and F. Capolino, “Field enhancement and optical trapping with plasmonic nano antennas on silicon-based waveguides,” in Radio Science Meeting (Joint with AP-S Symposium), 2015 USNC-URSI (2015), pp. 350–350.
[Crossref]

W. Thrift, C. Nguyen, M. Darvishzadeh-Varcheie, N. Sharac, R. Sanderson, F. Capolino, and R. Ragan, “Bridging the Gap between Crosslinking Chemistry and Directed Assembly of Metasurfaces Using Electrohydrodynamic Flow,” ArXiv:160906964 [Cond-Mat Physicsphysics] (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image with colloidal gold nanospheres on top of silicon nitride waveguide [38], (b) Proposed integrated CMOS-compatible waveguide with plasmonic nanoantennas (monomers, dimers, etc) immersed in a dielectric layer (represented in purple) covering the waveguide. The two examples, namely Case I and Case II, are investigated for field enhancement. In this paper we investigate the optical excitation of a dimer via guided modes in a silicon nitride waveguide, though other waveguide material choices could be utilized as well. In the bottom, the cross section field distribution of the fundamental propagating waveguide mode is shown, whereas on the top the insets show the dimensions of the dimer and the “hot spot” where the strongest field occurs as a result of waveguide excitation.

Fig. 2
Fig. 2

(a) Field enhancement and (b) electric field at the dimer center (yd = 286.5 nm) normalized to field at the waveguide center (y = 0), assuming the two different environments surrounding the plasmonic dimer nanoantenna: Cases I and II, with the thin film on waveguide as shown in Fig. 1(b). Here h is 25 nm for all cases.

Fig. 3
Fig. 3

First five propagating modes (quasi TE and quasi TM modes) in the silicon nitride waveguide, and field enhancement in the middle of the dimer (above the waveguide) for Case I as shown in Fig. 1(b) when each mode is individually excited.

Fig. 4
Fig. 4

E-field enhancement on three principal cross-sectional planes generated by the dimer nanoantenna Case I excited by the fundamental propagating mode of the integrated waveguide, at the dimer’s resonance frequency of 504THz. Field has been normalized with respect to magnitude of electric field at each location in the absence of dimer and the thin layer, and the colors are linearly mapped as shown in the legend. The vertical distance of the dimer from the waveguide surface, h, is 25 nm. The white dashed lines for the two right figures, show the interface of the thin layer in Fig. 1. and vacuum. In the labels, “a” is the radius of nanosphere and “yd “is the dimer’s center location along the y axis.

Fig. 5
Fig. 5

(a) Field enhancement profile at 504 THz along the y axis, i.e. vertical line passing through the dimer gap center, for Case I. Here h = 25 nm, the dimer is centered at y = 286.5 nm where the sharp peak occurs. (b) Electric field profile, normalized by the electric field at the center of the waveguide (y = 0 nm) for the same case in (a) at 504 THz. Two things must be noticed: (i) The left plot (a) shows a strong field enhancement within the nanoantenna gap. This field enhancement will be affected if the material hosting the nanoantenna has a different dielectric constant, as shown next. (ii) The right panel (b) shows that the field within the nanoantenna gap is 13.5 times stronger than the electric field at the center of the waveguide.

Fig. 6
Fig. 6

Field enhancement versus frequency, with the thin layer (Case I) and without the thin dielectric layer for three vertical displacements h. Dimer is still above the center of the waveguide and the gap is 2 nm as in the previous figures.

Fig. 7
Fig. 7

FE for various waveguide cross sectional dimensions when the waveguide is excited with its first propagating mode. In all cases h = 25 nm and gap = 2 nm.

Fig. 8
Fig. 8

Field enhancement in the absence of the thin dielectric layer (a) for various horizontal positions of the dimer versus frequency when h = 25 nm and the gap is 2 nm are kept constant. (b) Electric field profile at the dimer gap normalized to the average electric field at the waveguide surface (y = 250 nm), for various dimer’s horizontal positions along x-axis at 554 THz when h = 25 nm and the gap is 2 nm are kept constant. FE (c) for dimer’s horizontal position x = 200 nm and (d) for position x = 400 nm, versus frequency when h = 25 nm and the gap is 2 nm are kept constant and the waveguide is selectively excited by the waveguide’s higher order propagating modes.

Fig. 9
Fig. 9

Field enhancement versus frequency for various gap sizes when the dimer is located at h=25 nm and x=0 , and there is no dielectric thin layer.

Fig. 10
Fig. 10

FE for different dimer orientations with respect to the waveguide longitudinal axis z (a) 90 degrees, (b) 60 degrees, (c) 30 degrees and (d) 0 degrees, considering the waveguide’s first 5 propagating modes. The E-field profile in the x-z plane at the dimer location (h = 25 nm and dimer centered at x = 0) at 554 THz is shown in the right side.

Fig. 11
Fig. 11

Top view of different nanoantenna distributions on top of waveguide surfaces in the absence of thin dielectric layer is illustrated. We study the effect of coupling between nanoantennas on FE with respect to the case with an isolated dimer nanoantenna. (a) Effect of distance on coupling between two dimers; (b) effect of orientation on coupling between dimer and monomer.

Fig. 12
Fig. 12

Topology of a nanoantenna on top of a multilayer structure excited by a normally incident plane wave, and plot of field enhancement versus frequency for h = 0, 5, 25 nm, using the same gold nanosphere diameter and gap as in the waveguide-driven structure reported in Section 2.

Fig. 13
Fig. 13

Comparison of field enhancement for different structures with two kinds of excitation (Exc.). We compare the field enhancement of the waveguide (WG) based topology in Fig. 1. with the more traditional one, the plane wave (PW) illumination. Results of both topologies are in strong agreement. Furthermore, in both topologies the thin dielectric film results in stronger field enhancement and in an expected red-shift of the resonance frequency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FE= | E | / | E 0 | .

Metrics