Abstract

Wave-front shaping techniques enable focusing and imaging through scattering media. Unfortunately, most approaches require invasive feedback inside or behind the sample, or use of spatial correlations (memory effect) limiting the application to specific types of samples. Recent approaches overcome these limitations by taking advantage of acoustic waves via the photoacoustic (PA) effect or via photon tagging. We present a fully analog signal processing lock-in scheme for PA detection to improve focusing through scattering media and to efficiently extract nonlinear photoacoustic signals towards wave-front optimization. Our implementation improves PA feedback performance in terms of SNR, speed, and resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback

Jochen Aulbach, Bergin Gjonaj, Patrick Johnson, and Ad Lagendijk
Opt. Express 20(28) 29237-29251 (2012)

Thermal expansion feedback for wave-front shaping

Omer Tzang, Eyal Niv, Antonio M. Caravaca-Aguirre, and Rafael Piestun
Opt. Express 25(6) 6122-6131 (2017)

Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback

Gerwin Osnabrugge, Lyubov V. Amitonova, and Ivo M. Vellekoop
Opt. Express 27(8) 11673-11688 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  2. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC University, 2009).
  3. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  5. I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
    [Crossref]
  6. I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  7. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  8. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  9. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [Crossref] [PubMed]
  10. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  11. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref] [PubMed]
  12. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
    [Crossref] [PubMed]
  13. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
    [Crossref] [PubMed]
  14. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  15. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]
  16. D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).
  17. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
    [Crossref] [PubMed]
  18. T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
    [Crossref]
  19. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly-scattering turbid layers,” Optica 1(3), 1–10 (2014).
    [Crossref]
  20. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
    [Crossref] [PubMed]
  21. A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
    [Crossref] [PubMed]
  22. J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
    [Crossref] [PubMed]
  23. A. S. Goy and J. W. Fleischer, “Resolution enhancement in nonlinear photoacoustic imaging,” Appl. Phys. Lett. 107(21), 211102 (2015).
    [Crossref]
  24. P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
    [Crossref] [PubMed]
  25. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
    [Crossref] [PubMed]
  26. Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
    [Crossref] [PubMed]
  27. P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
    [Crossref] [PubMed]
  28. S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
    [Crossref] [PubMed]
  29. Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
    [Crossref] [PubMed]
  30. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
    [Crossref] [PubMed]
  31. A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
    [Crossref] [PubMed]
  32. A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
    [Crossref]
  33. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
    [Crossref] [PubMed]
  34. M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
    [Crossref] [PubMed]
  35. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
    [Crossref] [PubMed]
  36. O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
    [Crossref] [PubMed]
  37. O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
    [Crossref] [PubMed]

2015 (9)

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

A. S. Goy and J. W. Fleischer, “Resolution enhancement in nonlinear photoacoustic imaging,” Appl. Phys. Lett. 107(21), 211102 (2015).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
[Crossref]

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

2014 (6)

Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[Crossref] [PubMed]

Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly-scattering turbid layers,” Optica 1(3), 1–10 (2014).
[Crossref]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

2013 (3)

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

2012 (5)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

2008 (1)

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

2007 (3)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

1990 (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Azucena, O.

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Boccara, C.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Bossy, E.

A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
[Crossref]

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Brown, A. N.

Caravaca-Aguirre, A. M.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Chaigne, T.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Chang, C.-F.

Chen, C.

Chen, D. C.

Chen, Y.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Chen, Y. C.

Cheng, Y.-H.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[Crossref] [PubMed]

Cheshnovsky, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

Chitnis, P. V.

Conkey, D. B.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
[Crossref] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Danielli, A.

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Dorn, G. W.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Dove, J. D.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Favazza, C. P.

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

Fink, M.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Fleischer, J. W.

A. S. Goy and J. W. Fleischer, “Resolution enhancement in nonlinear photoacoustic imaging,” Appl. Phys. Lett. 107(21), 211102 (2015).
[Crossref]

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Fu, M.

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Garcia-Uribe, A.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Gigan, S.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Goy, A. S.

A. S. Goy and J. W. Fleischer, “Resolution enhancement in nonlinear photoacoustic imaging,” Appl. Phys. Lett. 107(21), 211102 (2015).
[Crossref]

Grange, R.

Guan, Y.

Haglund, R. F.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Hsieh, C.-L.

Huang, K.-C.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Ju, H.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Juratli, M. A.

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly-scattering turbid layers,” Optica 1(3), 1–10 (2014).
[Crossref]

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kong, F.

Kubby, J.

Lagendijk, A

I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Lai, P.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Lai, Y.-H.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[Crossref] [PubMed]

Leboulluec, P.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
[Crossref] [PubMed]

Lee, K. K.

Lee, S.-Y.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Li, C.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Liu, H.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Liu, L.

Marvel, R. E.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Maslov, K.

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Menyaev, Y. A.

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Mosk, A. P

I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Murray, T. W.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Nedosekin, D. A.

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Pevzner, A.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Piestun, R.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Poisson, F.

A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
[Crossref]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Prost, A.

A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
[Crossref]

Psaltis, D.

Pu, Y.

Sarimollaoglu, M.

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly-scattering turbid layers,” Optica 1(3), 1–10 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Silverman, R. H.

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear imaging through strongly-scattering turbid layers,” Optica 1(3), 1–10 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Sun, C.-K.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Y.-H. Lai, S.-Y. Lee, C.-F. Chang, Y.-H. Cheng, and C.-K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[Crossref] [PubMed]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Tao, X.

Tay, J. W.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Tseng, T.-F.

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Tzang, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Wang, L.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Wang, L. V.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Winkler, A. M.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Xia, J.

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

Xing, D.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
[Crossref] [PubMed]

Yang, S.

Yao, J.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Yuan, B.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
[Crossref] [PubMed]

Zhang, C.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Zhao, Y.

Zharov, V. P.

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
[Crossref] [PubMed]

Zuo, Y.

Am. J. Phys. (1)

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Danielli, K. Maslov, C. P. Favazza, J. Xia, and L. V. Wang, “Nonlinear photoacoustic spectroscopy of hemoglobin,” Appl. Phys. Lett. 106(20), 203701 (2015).
[Crossref] [PubMed]

A. S. Goy and J. W. Fleischer, “Resolution enhancement in nonlinear photoacoustic imaging,” Appl. Phys. Lett. 107(21), 211102 (2015).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 81108 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Nat. Photonics (8)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A Lagendijk, and A. P Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref] [PubMed]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Photoacoustics (1)

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

A. Prost, F. Poisson, and E. Bossy, “Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime,” Phys. Rev. B – Condens. Matter Mater. Phys. 92(11), 1–16 (2015).
[Crossref]

Phys. Rev. Lett. (2)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Sci. Rep. (1)

S.-Y. Lee, Y.-H. Lai, K.-C. Huang, Y.-H. Cheng, T.-F. Tseng, and C.-K. Sun, “In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates,” Sci. Rep. 5, 15421 (2015).
[Crossref] [PubMed]

Science (1)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Other (1)

L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Analog Signal processing for nonlinear PA. a- Typical PA signal using a 15MHz transducer. b- Rectified PA signal. Note the inversion of the negative lobes in a. c- Single pulse sample and hold circuit, implemented by a boxcar integrator. The gate (Red) shows the specific time window in which the PA signal (blue) is sampled. The integrated voltage (black) is held until the next pulse. d- Schematic, averaged output of the sample and hold circuit. Each pulse has now a discrete value and the modulation sidebands are enhanced with respect to the pulse train.
Fig. 2
Fig. 2 Experimental setup. A pulsed laser reflected off the SLM and focused on a glass diffuser by an objective. The pulse train is modulated by an AOM at ~1KHz. PA signals from the sample, behind the diffuser, are collected by the acoustic transducer, amplified and analyzed by the analog detection scheme (Fig. 1). A lock in amplifier detects the modulated PA signal and its output is used as a feedback for the SLM optimization. Focusing through the diffuser is optimized using genetic algorithms.
Fig. 3
Fig. 3 Results of focusing through scattering media using the lock-in amplifier and analog detection scheme. a- Borescope image of scattered light on a black tape sample. The wave-front phase is random. b-Focusing on black tape using the linear PA feedback from the lock-in amplifier. c- Focusing by non-linear feedback from the lock-in amplifier. The second harmonic of the modulation frequency contains the second order non-linearity of the PA signal. Repetition rate was 19 KHz, and optimized AOM sinusoidal modulation at 1.1 KHz. d- Cross section comparison of a-c. e –GA Optimization progress using linear PA feedback. f- GA optimization using non-linear PA feedback. The plots represent the lock-in output of the whole GA population at every iteration.

Metrics