Abstract

Metallic nanostructures offer efficient solutions in polarization control with a very low thickness. In this report, we investigate the optical properties of a nano-fabricated plasmonic pseudo-depolarizer using Mueller matrix spectroscopic ellipsometry in transmission configuration. The depolarizer is composed of 256 square cells, each containing a periodically corrugated metallic film with random orientation. The full Mueller matrix was analyzed as a function of incident angle in a range between 0 and 20° and over the whole rotation angle range. Depolarization could be achieved in two visible wavelength regions around the short-range and long-range surface plasmon polariton frequencies, respectively. Furthermore, depolarization for circularly polarized light was 2.5 times stronger than that for linearly polarized light. Our results could work as a guidance for realizing a broadband high efficiency dielectric metasurface depolarizers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization scramblers with plasmonic meander-type metamaterials

Philipp Schau, Liwei Fu, Karsten Frenner, M. Schäferling, Heinz Schweizer, Harald Giessen, Luis Miguel Gaspar Venancio, and Wolfgang Osten
Opt. Express 20(20) 22700-22711 (2012)

Anisotropic plasmonic Cu nanoparticles in sol-gel oxide nanopillars studied by spectroscopic Mueller matrix ellipsometry

Z. Ghadyani, M. Kildemo, L. M. S. Aas, Y. Cohin, and E. Søndergård
Opt. Express 21(25) 30796-30811 (2013)

Depolarization and principal Mueller matrix measured by null ellipsometry

Soe-Mie F. Nee
Appl. Opt. 40(28) 4933-4939 (2001)

References

  • View by:
  • |
  • |
  • |

  1. Thorlabs, “Quartz-Wedge Depolarizers” and “Liquid Crystal Polymer (LCP) Depolarizers,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8043 .
  2. B. Dörband, H. Müller, and H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH Verlag GmbH & C. KGaA, 2012).
  3. J. C. G Sande, G. Piquero, and C. Teijeiro, “Polarization changes at Lyot depolarizer output for different types of input beams,” J. Opt. Soc. Am. A 29(3), 278–284 (2012).
    [Crossref]
  4. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43(24), 4667–4671 (2004).
    [Crossref] [PubMed]
  5. B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
    [Crossref]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  7. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  8. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
    [Crossref] [PubMed]
  9. D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
    [Crossref]
  10. S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
    [Crossref]
  11. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
    [Crossref]
  12. Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
    [Crossref] [PubMed]
  13. P. Schau, L. Fu, K. Frenner, M. Schäferling, H. Schweizer, H. Giessen, L. M. G. Venancio, and W. Osten, “Polarization scramblers with plasmonic meander-type metamaterials,” Opt. Express 20(20), 22700–22711 (2012).
    [Crossref] [PubMed]
  14. E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
    [Crossref]
  15. E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. Alkemade, A. van Zuuk, and E. W. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30(1), 90–92 (2005).
    [Crossref] [PubMed]
  16. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
    [Crossref]
  17. A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
    [Crossref]
  18. R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
    [Crossref]
  19. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
    [Crossref]
  20. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding nearfields,” Optik 112(9), 399–406 (2001).
    [Crossref]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Berlin / Heidelberg, 1988).
  23. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
    [Crossref] [PubMed]
  24. D. H. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).
  25. B. Bilski, Line Edge Roughness in Optical Critical Dimension Metrology (Dissertation, University of Stuttgart, 2016).
  26. S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
    [Crossref]
  27. O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38(7), 1134–1136 (2013).
    [Crossref] [PubMed]
  28. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013).
    [Crossref] [PubMed]
  29. G. F. Walsh, C. Forestiere, and L. Dal Negro, “Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers,” Opt. Express 19(21), 21081–21090 (2011).
    [Crossref] [PubMed]
  30. K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, “Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: design, fabrication, and characterization,” Opt. Express 22(8), 9271–9281 (2014).
    [Crossref] [PubMed]
  31. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]

2016 (1)

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

2015 (4)

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

2014 (3)

K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, “Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: design, fabrication, and characterization,” Opt. Express 22(8), 9271–9281 (2014).
[Crossref] [PubMed]

E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
[Crossref]

A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
[Crossref]

2013 (4)

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38(7), 1134–1136 (2013).
[Crossref] [PubMed]

O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (5)

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

G. F. Walsh, C. Forestiere, and L. Dal Negro, “Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers,” Opt. Express 19(21), 21081–21090 (2011).
[Crossref] [PubMed]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[Crossref] [PubMed]

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2001 (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding nearfields,” Optik 112(9), 399–406 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ajayi, L.

Alkemade, P. F.

Altewischer, E.

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arteaga, O.

Arwin, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Berrier, A.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
[Crossref]

Bortchagovsky, E. G.

E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
[Crossref]

Brasselet, E.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, P.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Choi, W.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dal Negro, L.

De Zuani, S.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

Dressel, M.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

Drezet, A.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ee, H. S.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Fainman, Y.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Feng, L.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Fleischer, K.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Forestiere, C.

Fox, D.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Frenner, K.

Fu, L.

Ge, S.-J.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Genet, C.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. Alkemade, A. van Zuuk, and E. W. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30(1), 90–92 (2005).
[Crossref] [PubMed]

Giese, J.

Giessen, H.

Gompf, B.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Hakobyan, D.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Hingerl, K.

E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
[Crossref]

Honma, M.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hu, W.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Johnson, E.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Juodkazis, S.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Kahr, B.

Kang, J. H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Kim, S. K.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Kim, Y. H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Kwon, H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Kwon, S. H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Lee, K. J.

Li, L.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, T.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Liu, Z.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Lomakin, V.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Lu, Y.-Q.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Magallanes, H.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Magnusson, R.

McGilp, J. F.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Mishakova, T. O.

E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
[Crossref]

Mizrahi, A.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Modreanu, M.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Nose, T.

Oates, T. W. H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Osten, W.

Park, H. G.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

Pemble, M.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Piquero, G.

Reindl, T.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

Rommel, M.

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

Sande, J. C. G

Schäferling, M.

Schau, P.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schweizer, H.

Seniutinas, G.

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Shvets, I. V.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Smith, C.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Tang, X. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Teijeiro, C.

Totzeck, M.

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding nearfields,” Optik 112(9), 399–406 (2001).
[Crossref]

Ualibek, O.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

van der Drift, E. W.

van Exter, M. P.

van Zuuk, A.

Venancio, L. M. G.

Verre, R.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Walsh, G. F.

Wang, Q. J.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, S. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wei, B.-Y.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Weiss, T.

A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
[Crossref]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Woerdman, J. P.

Wormeester, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Zamek, S.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

Zhang, H.

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

Zhang, L.-C.

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Zhu, S. N.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

ACS Nano (1)

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

S. De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, and M. Dressel, “High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties,” ACS Photonics 2(12), 1719–1724 (2015).
[Crossref]

Adv. Opt. Mater. (1)

D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, “Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces,” Adv. Opt. Mater. 4(2), 306–312 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett. 98(1), 2009–2012 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in wellrouted beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Optik (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding nearfields,” Optik 112(9), 399–406 (2001).
[Crossref]

Photonics Res. (1)

B.-Y. Wei, P. Chen, S.-J. Ge, L.-C. Zhang, W. Hu, and Y.-Q. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photonics Res. 4(2), 70 (2016).
[Crossref]

Phys. Rev. B (3)

A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B 89(19), 1–7 (2014).
[Crossref]

R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, “General approach to the analysis of plasmonic structures using spectroscopic ellipsometry,” Phys. Rev. B 87(23), 235428 (2013).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Prog. Surf. Sci. (1)

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86(11-12), 328–376 (2011).
[Crossref]

Thin Solid Films (1)

E. G. Bortchagovsky, T. O. Mishakova, and K. Hingerl, “Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization,” Thin Solid Films 571, 625–630 (2014).
[Crossref]

Other (5)

Thorlabs, “Quartz-Wedge Depolarizers” and “Liquid Crystal Polymer (LCP) Depolarizers,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8043 .

B. Dörband, H. Müller, and H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH Verlag GmbH & C. KGaA, 2012).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Berlin / Heidelberg, 1988).

D. H. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).

B. Bilski, Line Edge Roughness in Optical Critical Dimension Metrology (Dissertation, University of Stuttgart, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical microscope image of the fabricated depolarizer. An SEM image of four neighboring square cells shows the stitching between different squares. Inset is a zoomed part of the grating with a periodicity of 400 nm; (b) Schematic representation of the relative grating angles in each unit cell; (c) Cross-sectional SEM image of the fabricated meander grating together with a structure schematic. Px is the periodicity of the grating, t is the metal thickness and d is the grating height. The gray meander profile indicates the embedded Ag film.

Fig. 2
Fig. 2

(a) Measured transmittance spectrum from the whole depolarizer (black curve) at normal incidence for p-polarized light. The gray curve is the transmittance of an unpatterned Ag film. (b) Measured transmittance (black curve) compared with the calculated one (magenta). (c) Measured normal incident transmittance for p-polarized light (Tpp) as a function of rotation angle at different wavelengths and (d) for s-polarized light (Tss).

Fig. 3
Fig. 3

(a) Measured Mueller matrix elements as a function of the incident angle averaged over the measured rotation angle range of 0-360°. The matrix elements are plotted in absolute values normalized to M11. (b) DOPs for the three polarization states from the depolarizer and from the unstructured region at λ = 780 nm.

Fig. 4
Fig. 4

(a) Lu depolarization factor D for linear polarization states of 0°/90° (LP), ± 45° (LP’) and circular polarization state (CP) obtained from the differential decomposition of the Mueller matrix. The orange solid line is the measured transmittance T; (b) Spectra in terms of FOM for the three polarization states, which are normalized to the maximum on the CP curve.

Fig. 5
Fig. 5

Rotation angle dependent depolarization spectra for (a) linearly polarized light of 0°/90°, (b) linearly polarized light of ± 45°, and (c) circularly polarized light.

Fig. 6
Fig. 6

(a) Measured transmittance spectra as a function of incident angle illustrating the dispersion; (b) Top row: dispersion of Lu depolarization factors for the polarization states of LP, LP’ and CP light; Bottom row: dispersion of normalized FOM for the polarization states of LP, LP’ and CP light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D O P = S 1 2 + S 2 2 + S 3 2 S 0 ,

Metrics