Abstract

Power coupling between two gain-guided index-antiguided (GGIAG) planar waveguides is numerically investigated. The strength of coupling is found to vary periodically with the gap between the two waveguide cores, owing to the Fabry-Perot-like behavior of the gap. Moreover, the coupling length at which one waveguide has the minimum power and the coupling length at which another waveguide obtains the maximum power are different. Further investigation reveals that such a difference is attributed to the gain provided in the low-index cores.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers

Chih-Hsien Lai, Hsuan-Yu Chen, Cheng-Han Du, and Yih-Peng Chiou
Opt. Express 23(4) 3876-3885 (2015)

Lasing in a gain-guided index antiguided fiber

Ying Chen, Vikas Sudesh, Timothy McComb, Martin C. Richardson, Michael Bass, and John Ballato
J. Opt. Soc. Am. B 24(8) 1683-1688 (2007)

Scalable side-pumped, gain-guided index-antiguided fiber laser

William Hageman, Ying Chen, Xiangru Wang, Lanlan Gao, Gyu Ug Kim, Martin Richardson, and Michael Bass
J. Opt. Soc. Am. B 27(12) 2451-2459 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
    [Crossref]
  2. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  3. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45‒46, 3–160 (2016).
    [Crossref]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  5. M. E. Fermann and I. Harti, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  6. A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), 1617–1628 (2003).
    [Crossref] [PubMed]
  7. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007).
    [Crossref]
  8. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
    [Crossref] [PubMed]
  9. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
    [Crossref]
  10. J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
    [Crossref] [PubMed]
  11. L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
    [Crossref]
  12. I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
    [Crossref]
  13. S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
    [Crossref] [PubMed]
  14. Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
    [Crossref]
  15. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  16. H. S. Hinton, “Photonic switching using directional couplers,” IEEE Commun. Mag. 25(5), 16–26 (1987).
    [Crossref]
  17. X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
    [Crossref]
  18. E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
    [Crossref]
  19. J. Yamauchi, Propagating Beam Analysis of Optical Waveguides (Institute of Physics, 2003).
  20. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004).
    [Crossref] [PubMed]
  21. R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17(6), 946–959 (1981).
    [Crossref]
  22. M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
    [Crossref] [PubMed]
  23. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  25. M. Mann, U. Trutschel, C. Wächter, L. Leine, and F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16(11), 805–807 (1991).
    [Crossref] [PubMed]
  26. C.-H. Lai, C.-K. Sun, and H.-C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36(18), 3590–3592 (2011).
    [Crossref] [PubMed]

2016 (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45‒46, 3–160 (2016).
[Crossref]

2014 (1)

2013 (2)

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

M. E. Fermann and I. Harti, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

2011 (3)

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

C.-H. Lai, C.-K. Sun, and H.-C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36(18), 3590–3592 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
[Crossref]

2008 (3)

M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
[Crossref] [PubMed]

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

2007 (3)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2001 (1)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

1994 (1)

1991 (1)

1987 (1)

H. S. Hinton, “Photonic switching using directional couplers,” IEEE Commun. Mag. 25(5), 16–26 (1987).
[Crossref]

1981 (1)

R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17(6), 946–959 (1981).
[Crossref]

Alferness, R. C.

R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17(6), 946–959 (1981).
[Crossref]

Baker, H. J.

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
[Crossref] [PubMed]

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Beach, R. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Beecher, S. J.

Casperson, L. W.

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

Chang, H.-C.

Chen, Y.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Cheng, X.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Clarkson, W. A.

Dittli, A.

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

Eason, R. W.

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Harti, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Friel, G. J.

Grant-Jacob, J. A.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45‒46, 3–160 (2016).
[Crossref]

Hall, D. R.

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
[Crossref] [PubMed]

Harti, I.

M. E. Fermann and I. Harti, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Her, T.-H.

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

Hettrick, S. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Hilton, G. J.

Hinton, H. S.

H. S. Hinton, “Photonic switching using directional couplers,” IEEE Commun. Mag. 25(5), 16–26 (1987).
[Crossref]

Huang, W.-P.

Juo, J.

X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
[Crossref]

Koshiba, M.

Lai, C.-H.

Lederer, F.

Lee, J. R.

Leine, L.

Li, C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Liu, Y.

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

Mackenzie, J. I.

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mann, M.

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Meissner, H. E.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mitchell, S. C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Monjardin, F. J. F.

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

Nilsson, J.

Parsonage, T. L.

Peng, B.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Richardson, D. J.

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Saitoh, K.

Shepherd, D. P.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Siegman, A. E.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007).
[Crossref]

A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), 1617–1628 (2003).
[Crossref] [PubMed]

Skorobogatiy, M.

Sloyan, K. A.

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Sun, C.-K.

Thomson, I. J.

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

Trutschel, U.

Wächter, C.

Wang, X.

X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
[Crossref]

Wang, Y.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Wei, W.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Xiao, L.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Xiong, C.

X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
[Crossref]

Xu, J.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Yan, K.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Yu, C.-P.

Zhao, B.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Zhou, E.

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3–4), 369–372 (2008).
[Crossref]

Appl. Phys. Lett. (1)

Y. Liu, T.-H. Her, A. Dittli, and L. W. Casperson, “Continuous-wave hybrid index-antiguided and thermal-guided planar waveguide laser,” Appl. Phys. Lett. 103(19), 191103 (2013).
[Crossref]

IEEE Commun. Mag. (1)

H. S. Hinton, “Photonic switching using directional couplers,” IEEE Commun. Mag. 25(5), 16–26 (1987).
[Crossref]

IEEE J. Quantum Electron. (2)

R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17(6), 946–959 (1981).
[Crossref]

I. J. Thomson, F. J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47(10), 1336–1345 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Nat. Photonics (1)

M. E. Fermann and I. Harti, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Opt. Common. (1)

E. Zhou, K. Yan, B. Zhao, Y. Wang, W. Wei, and B. Peng, “General coupled-mode analysis for gain-guided, index-antiguided fibers, and index-guided fibers,” Opt. Common. 284(4), 1034–1037 (2011).
[Crossref]

Opt. Commun. (2)

X. Wang, C. Xiong, and J. Juo, “Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers,” Opt. Commun. 282(3), 382–386 (2009).
[Crossref]

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45‒46, 3–160 (2016).
[Crossref]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

J. Yamauchi, Propagating Beam Analysis of Optical Waveguides (Institute of Physics, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Longitudinal cross-section and transverse index profile of the structure containing two identical and parallel GGIAG planar waveguides.
Fig. 2
Fig. 2 Power evolution along the two GGIAG planar waveguides with g = 0.75 cm-1 and d = 3.0 μm. In this case, the distance at which P1 reaches minimum (denoted as Lc1) and the distance at which P2 reaches maximum (denoted as Lc2) are different.
Fig. 3
Fig. 3 Coupling length as a function of gap between waveguide cores with g = 0.75 cm-1. Lc1 and Lc2 are obtained from BPM simulation. For the notation, “R” represents the resonant condition, and “AR” represents the antiresonant condition.
Fig. 4
Fig. 4 (a) Effective index as a function of waveguide gap for the even and odd system modes. For the notation, “R” represents the resonant condition. (b) Field distributions of the system modes corresponding to the points designated in (a). The dotted lines indicate the positions of core-cladding interfaces. The inset shows the field distribution zoomed in the gap region.
Fig. 5
Fig. 5 Coupling length as a function of gap for several material gain coefficients. (a) g = 0, (b) g = 0.25 cm-1, (c) g = 0.5 cm-1, (d) g = 0.75 cm-1, (e) g = 1.0 cm-1, and (f) g = 1.25 cm-1.
Fig. 6
Fig. 6 Coupling length as a function of material gain coefficient. (a) d = 2.1 μm (the gap is antiresonant), and (b) d = 2.75 μm (the gap is resonant).
Fig. 7
Fig. 7 Results calculated with d = 2.1 μm where the gap is antiresonant. (a) Modal gain coefficient of the system modes as a function of material gain coefficient. Inset: Transverse field distributions Ee(x) and Eo(x) of the even and the odd system modes at the input end (z = 0). (b) Coupling length as a function of material gain coefficient.
Fig. 8
Fig. 8 Power evolution along the propagation distance for g = 0.25, 0.5 and 0.75 cm-1. (a) d = 2.1 μm (the gap is antiresonant), and (b) d = 2.75 μm (the gap is resonant). P1, P2, and Pg are the powers in the first waveguide core, the second waveguide core, and the gap between the waveguide cores. The total power Pt = P1 + P2 + Pg.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d= mλ 4 n cl 2 n co,r 2 ,
L c = π | Re( β e )Re( β o ) | = π k 0 | n e n o | ,
E t (x,z)= a e E e (x) e j[(β+Δβ/2)+jγ/2]z + a o E o (x) e j[(βΔβ/2)+jγ/2]z ,
E 1 (z)= E t ( x 1 ,z)=aE{ e j[(β+Δβ/2)+jγ/2]z + e j[(βΔβ/2)+jγ/2]z }.
E 2 (z)= E t ( x 2 ,z)=aE{ e j[(β+Δβ/2)+jγ/2]z e j[(βΔβ/2)+jγ/2]z }.
P 1 (z)= C 1 | E 1 (z) | 2 =4 C 1 |a | 2 |E | 2 e γz cos 2 ( Δβz 2 ),
P 2 (z)= C 2 | E 2 (z) | 2 =4 C 2 |a | 2 |E | 2 e γz sin 2 ( Δβz 2 ),
L c1 = π Δβ .
d P 2 dz =4 C 2 |a | 2 |E | 2 d dz [ e γz sin 2 ( Δβz 2 ) ] =4 C 2 |a | 2 |E | 2 Δ β 2 + γ 2 e γz sin( Δβz 2 )cos( Δβz 2 ϕ ),
sinϕ= γ Δ β 2 + γ 2 .
L c2 = π Δβ + 2ϕ Δβ = L c1 + 2ϕ Δβ .
γ=g α IAG .

Metrics