Abstract

A novel optical encoding method based on single-shot ptychography is proposed for the application of optical watermarking. For the inherent properties of single-shot ptychography, the watermark is encoded into a series of tiny diffraction spots just in one exposure. Those tiny spots have high imperceptibility and compressibility, which are quite suitable for the optical watermarking application. The security of the proposed watermarking is mainly supported by the strong imperceptibility, as well as the introduction of compression encoding and scrambling encoding. In addition, the diversity of the multi-pinhole array and the structural parameters can also be served as security keys. Both numerical simulation and optical experiment demonstrate the high security and the easy implementation of the single-shot-ptychography-based optical watermarking. Further, the compression encoding can largely improve the embedding capacity that enables the multiple-watermarking for more transmitted information and higher security.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A blind robust watermarking scheme with non-cascade iterative encrypted kinoform

Ke Deng, Guanglin Yang, and Haiyan Xie
Opt. Express 19(11) 10241-10251 (2011)

Single-shot ptychography

Pavel Sidorenko and Oren Cohen
Optica 3(1) 9-14 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41(5), 865–873 (2002).
    [Crossref] [PubMed]
  2. H. T. Chang and C. L. Tsan, “Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,” Appl. Opt. 44(29), 6211–6219 (2005).
    [Crossref] [PubMed]
  3. L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43(15), 3078–3084 (2004).
    [Crossref] [PubMed]
  4. S. Wang, S. Huang, X. Zhang, and W. Wu, “Hologram-based watermarking capable of surviving print-scan process,” Appl. Opt. 49(7), 1170–1178 (2010).
    [Crossref] [PubMed]
  5. J. Li, “An optimized watermarking scheme using an encrypted gyrator transform computer generated hologram based on particle swarm optimization,” Opt. Express 22(8), 10002–10016 (2014).
    [Crossref] [PubMed]
  6. A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
    [Crossref]
  7. H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
    [Crossref]
  8. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
    [Crossref]
  9. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett. 35(15), 2585–2587 (2010).
    [Crossref] [PubMed]
  10. J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008).
    [Crossref]
  11. J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
    [Crossref]
  12. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
    [Crossref] [PubMed]
  13. N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
    [Crossref]
  14. N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
    [Crossref]
  15. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010).
    [Crossref] [PubMed]
  16. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35(22), 3817–3819 (2010).
    [Crossref] [PubMed]
  17. M. T. Shiu, Y. K. Chew, H. T. Chan, X. Y. Wong, and C. C. Chang, “Three-dimensional information encryption and anticounterfeiting using digital holography,” Appl. Opt. 54(1), A84–A88 (2015).
    [Crossref] [PubMed]
  18. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  19. H. Singh, A. K. Yadav, S. Vashisth, and K. Singh, “Fully phase image encryption using double random-structured phase masks in gyrator domain,” Appl. Opt. 53(28), 6472–6481 (2014).
    [Crossref] [PubMed]
  20. X. Wang, W. Chen, and X. Chen, “Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding,” Opt. Express 22(19), 22981–22995 (2014).
    [Crossref] [PubMed]
  21. P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9–14 (2016).
    [Crossref]
  22. X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
    [Crossref]
  23. Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
    [Crossref]
  24. P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50(13), 1805–1811 (2011).
    [Crossref] [PubMed]
  25. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
    [Crossref]
  26. E. Hecht, Optics, 4th ed. (Addision-Wesley, 2001).
  27. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
    [Crossref] [PubMed]
  28. T. Li and Y. Shi, “Security risk of diffractive-imaging-based optical cryptosystem,” Opt. Express 23(16), 21384–21391 (2015).
    [Crossref] [PubMed]
  29. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
    [Crossref] [PubMed]

2016 (2)

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9–14 (2016).
[Crossref]

2015 (4)

T. Li and Y. Shi, “Security risk of diffractive-imaging-based optical cryptosystem,” Opt. Express 23(16), 21384–21391 (2015).
[Crossref] [PubMed]

M. T. Shiu, Y. K. Chew, H. T. Chan, X. Y. Wong, and C. C. Chang, “Three-dimensional information encryption and anticounterfeiting using digital holography,” Appl. Opt. 54(1), A84–A88 (2015).
[Crossref] [PubMed]

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

2014 (4)

2013 (3)

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
[Crossref] [PubMed]

2011 (2)

A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
[Crossref]

P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50(13), 1805–1811 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

2008 (3)

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008).
[Crossref]

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

1995 (1)

Agic, D.

A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
[Crossref]

Alfalou, A.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Brosseau, C.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Bunk, O.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Cai, L. Z.

Chan, H. T.

Chang, C. C.

Chang, H. T.

Chen, W.

Chen, X.

Chew, Y. K.

Clemente, P.

Cohen, O.

Dierolf, M.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Durán, V.

Gao, Q.

He, M. Z.

Huang, S.

Humphry, M. J.

Hwang, I.

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

Javidi, B.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Johnson, I.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Joseph, J.

Kim, B.

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

Kumar, P.

Kynde, S.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Lancis, J.

Lee, B.

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

Lee, B.-G.

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

Li, H.

Li, J.

Li, T.

Liu, C.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Liu, Q.

Maiden, A. M.

A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett. 35(15), 2585–2587 (2010).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

Mandic, L.

A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
[Crossref]

Marti, O.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Mifune, Y.

Pan, A.

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

Pan, X.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Pfeiffer, F.

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Poljicak, A.

A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
[Crossref]

Rawat, N.

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

Refregier, P.

Rodenburg, J. M.

A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett. 35(15), 2585–2587 (2010).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008).
[Crossref]

Sheppard, C. J. R.

Shi, Y.

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

T. Li and Y. Shi, “Security risk of diffractive-imaging-based optical cryptosystem,” Opt. Express 23(16), 21384–21391 (2015).
[Crossref] [PubMed]

Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
[Crossref] [PubMed]

Shiu, M. T.

Sidorenko, P.

Singh, H.

Singh, K.

Song, H.

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Song, L.

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Tajahuerce, E.

Takai, N.

Torres-Company, V.

Tsan, C. L.

Vashisth, S.

Wang, C.

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
[Crossref] [PubMed]

Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Wang, Z.

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

Wong, X. Y.

Wu, W.

Yadav, A. K.

Yang, X.

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Yang, X. L.

Yu, S.

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Zhang, J.

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

Zhang, S.

Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
[Crossref] [PubMed]

Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Zhang, X.

Zhu, J.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Adv. Imaging Electron Phys. (1)

J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008).
[Crossref]

Adv. Opt. Photonics (2)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Chin. Phys. Lett. (1)

Y. Shi, Y. Wang, and S. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

J. Electron. Imaging (1)

A. Poljicak, L. Mandic, and D. Agic, “Discrete Fourier transform- based watermarking method with an optimal implementation radius,” J. Electron. Imaging 20(3), 033008 (2011).
[Crossref]

J. Opt. (2)

J. Zhang, Z. Wang, T. Li, A. Pan, Y. Wang, and Y. Shi, “3D object hiding using three-dimensional ptychography,” J. Opt. 18(9), 095701 (2016).
[Crossref]

N. Rawat, I. Hwang, Y. Shi, and B. Lee, “Optical image encryption via photon-counting imaging and compressive sensing based ptychography,” J. Opt. 17(6), 065704 (2015).
[Crossref]

Opt. Commun. (1)

N. Rawat, Y. Shi, B. Kim, and B.-G. Lee, “Sparse-based multispectral image encryption via ptychography,” Opt. Commun. 356, 296–305 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Signal Process-Image. (1)

H. Song, S. Yu, X. Yang, L. Song, and C. Wang, “Contourlet-based image adaptive watermarking,” Signal Process-Image. 23(3), 162–178 (2008).
[Crossref]

Ultramicroscopy (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
[Crossref] [PubMed]

Other (1)

E. Hecht, Optics, 4th ed. (Addision-Wesley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic setups for optical watermarking based on single-shot-ptychography encoding.

Fig. 2
Fig. 2

(a) System structure of single-shot-ptychography encoding; (b) Schematic for compression encoding and scrambling encoding (scrambling modes marked in red dotted blocks, scrambling mode for S2 marked in blue dotted blocks).

Fig. 3
Fig. 3

Experimental demonstration of optical watermarking based on single-shot-ptychography encoding.

Fig. 4
Fig. 4

Numerical demonstration of our proposed optical watermarking based on single-shot-ptychography encoding. (a) Numerical results of the watermark with ample details; (b) Numerical results of the watermark with periodical fringes.

Fig. 5
Fig. 5

Numerical and experimental demonstrations of the effectiveness of scrambling encoding. (a) Extracted amplitude by numerical simulation; (b) Extracted phase by numerical simulation; (c) Extracted amplitude by experiment; (d) Extracted phase by experiment.

Fig. 6
Fig. 6

Numerical results of the multi-pinhole array with wrong parameters. (a) and (b) Extracted amplitude and phase with D = 55μm; (c) and (d) Extracted amplitude and phase with b = 1.

Fig. 7
Fig. 7

The correlation coefficient Co curve of the extracted watermarks’ amplitude and phase change over the different structural parameters. (a), (c), and (e) Co of amplitude; (b), (d), and (f) Co of amplitude.

Fig. 8
Fig. 8

Numerical and experimental demonstrations of the security introduced by structural parameters. (a) Extracted amplitude by numerical simulation; (b) Extracted phase by numerical simulation; (c) Extracted amplitude by experiment; (d) Extracted phase by experiment.

Fig. 9
Fig. 9

Extracted watermarks under the attack of noise. (a) and (b) Extracted amplitude and phase under the attack of salt & pepper noise; (c) and (d) Extracted amplitude and phase under the attack of normalized random noise.

Fig. 10
Fig. 10

Numerical results under attack of occlusion. (a), (e) and (i) The occluded watermarked images; (b), (f) and (j) The extracted encoded images; (c), (g) and (k) The extracted amplitude distributions; (d), (h) and (l) The extracted phase distributions.

Fig. 11
Fig. 11

Optimized scheme to enhance the robustness. (a) Original diffraction pattern; (b) Optimized encoded image

Tables (1)

Tables Icon

Table 1 PSNR of different attenuation coefficient α and schemes of encoding

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U n = ξ ( f 1 d) [ ξ f 1 [P(r R n )]t],
U= n U n ,(n=1,2,, N 2 ).
I n = | ξ f 2 ( ξ ( f 2 +d) [ U n f(x,y)]t) | 2 ,
I= n I n .
W=Eα+H,
E= (W-H) /α .
I ng m = | ξ f 2 ( ξ ( f 2 +d) [ U n f ng m (x,y)]t) | 2 .
I n m = I n [ I ng m / | I ng m | ].
f ngNew m (x,y)= ξ ( f 2 +d) 1 [ ξ f 2 1 [ I n m ] t ],
f (n+1)g m (x,y)= f ng m (x,y)+ U n max( | U n | 2 ) ( f ngNew m (x,y) U n f ng m (x,y)).
CO(f, f 0 )=cov(f, f 0 ) ( σ f σ f 0 ) 1 ,
PSNR=10lo g 10 ( MaxP V 2 / MSE )(dB),
MSE= ( p=1 P q=1 Q ( f p,q - f p,q ) 2 ) / (PQ) ,

Metrics