Abstract

We demonstrate large amplitude wavelength modulation spectroscopy (WMS) with a MEMS-tunable vertical cavity surface-emitting laser (MEMS-VCSEL) to measure high-density gases. WMS enables sensitive measurements of gas phase thermodynamic properties in harsh environments, but has been limited to moderate pressure and density conditions because of the narrow tuning range of traditional DFB lasers. The MEMS-tunable laser is able to rapidly modulate across the broadened features of high-density gas mixtures to produce the harmonic signals in the detected light intensity typical of WMS. We illustrate the technique on high-pressure mixtures of CO2 in air that are 2.5 times higher density than previously published WMS measurements (equivalent to greater than 255 atm at 1500 K). We develop a WMS model that accounts for nonlinear tuning of the laser to enable extraction of thermodynamic properties from measured data. The agreement of the measured data and model suggests that this technique could be used now for calibrated measurements of gas concentration, and in the future for calibration-free operation with further high-pressure absorption model development and laser tuning characterization.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments

Gregory B. Rieker, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 48(29) 5546-5560 (2009)

References

  • View by:
  • |
  • |
  • |

  1. “Monthly Energy Review January 2016,” U.S. Energy Information Administration.
  2. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
    [Crossref]
  3. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
    [Crossref]
  4. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
    [Crossref] [PubMed]
  5. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
    [Crossref] [PubMed]
  6. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
    [Crossref]
  7. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31(6), 718–731 (1992).
    [Crossref] [PubMed]
  8. R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
    [Crossref]
  9. V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” in C. Lei and K. D. Choquette, eds. (2012), p. 82760D.
  10. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
    [Crossref] [PubMed]
  11. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
    [Crossref]
  12. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
    [Crossref]
  13. V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36(36), 9518–9527 (1997).
    [Crossref] [PubMed]
  14. A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
    [Crossref] [PubMed]
  15. K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
    [Crossref]
  16. A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
    [Crossref] [PubMed]
  17. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
    [Crossref]
  18. G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
    [Crossref]
  19. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
    [Crossref]
  20. R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
    [Crossref]
  21. A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
    [Crossref]
  22. C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
    [Crossref]
  23. W. R. Lempert, J. P. Looney, B. Zhang, and R. B. Miles, “Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen,” J. Opt. Soc. Am. B 7(5), 715 (1990).
    [Crossref]
  24. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
    [Crossref] [PubMed]
  25. C. E. Dedic, J. B. Michael, J. D. Miller, and T. R. Meyer, “Evaluation of Hybrid fs/ps coherent anti-Stokes Raman scattering temperature and pressure sensitivity at combustor relevant conditions,” in (American Institute of Aeronautics and Astronautics, 2016).
  26. D. J. Gardiner and P. R. Graves, Practical Raman Spectroscopy (Springer Science & Business Media, 2012).
  27. B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
    [Crossref]
  28. M. Abe, S. Kusanagi, Y. Nishida, O. Tadanaga, H. Takenouchi, and H. Sasada, “Dual wavelength 3.2-μm source for isotope ratio measurements of (13)CH(4)/(12)CH(4),” Opt. Express 23(17), 21786–21797 (2015).
    [Crossref] [PubMed]
  29. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38(27), 5803–5815 (1999).
    [Crossref] [PubMed]
  30. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32(30), 6090–6103 (1993).
    [Crossref] [PubMed]
  31. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
    [Crossref] [PubMed]
  32. K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
    [Crossref]
  33. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
    [Crossref] [PubMed]
  34. X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
    [Crossref]
  35. “Modeling MEMS and NEMS,” https://www.crcpress.com/Modeling-MEMS-and-NEMS/Pelesko-Bernstein/p/book/9781584883067 .
  36. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
    [Crossref] [PubMed]
  37. M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band,” J. Quant. Spectrosc. Radiat. Transf. 42(4), 311–317 (1989).
    [Crossref]
  38. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
    [Crossref]
  39. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43(35), 6500–6509 (2004).
    [Crossref] [PubMed]

2015 (2)

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

M. Abe, S. Kusanagi, Y. Nishida, O. Tadanaga, H. Takenouchi, and H. Sasada, “Dual wavelength 3.2-μm source for isotope ratio measurements of (13)CH(4)/(12)CH(4),” Opt. Express 23(17), 21786–21797 (2015).
[Crossref] [PubMed]

2014 (2)

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

2013 (5)

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
[Crossref]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

2012 (4)

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012).
[Crossref] [PubMed]

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
[Crossref]

2011 (1)

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

2010 (1)

A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
[Crossref]

2009 (2)

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

2007 (1)

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

2006 (1)

2005 (1)

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

2004 (1)

2002 (1)

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
[Crossref]

2000 (2)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

1999 (1)

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

1997 (1)

1993 (1)

1992 (2)

1990 (1)

1989 (2)

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band,” J. Quant. Spectrosc. Radiat. Transf. 42(4), 311–317 (1989).
[Crossref]

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
[Crossref]

1965 (1)

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Abe, M.

Aldén, M.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

An, X.

Arndt, R.

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Axner, O.

Baer, D. S.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

Baldwin, J. A.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

Barlow, R. S.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Bomse, D. S.

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

Cai, T.

G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
[Crossref]

Caswell, A. W.

Chao, X.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
[Crossref]

Chen, B.

G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
[Crossref]

Clough, S. A.

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
[Crossref]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Davies, R. W.

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
[Crossref]

Dedic, C. E.

Ebert, V.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Farooq, A.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
[Crossref]

Fernholz, T.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Gao, G.

G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
[Crossref]

Giesemann, C.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Goldenstein, C. S.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Gord, J. R.

Hanson, R. K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43(35), 6500–6509 (2004).
[Crossref] [PubMed]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36(36), 9518–9527 (1997).
[Crossref] [PubMed]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32(30), 6090–6103 (1993).
[Crossref] [PubMed]

Hartmann, J. M.

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band,” J. Quant. Spectrosc. Radiat. Transf. 42(4), 311–317 (1989).
[Crossref]

Jaritz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Jayaraman, V.

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Jeffries, J. B.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
[Crossref]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43(35), 6500–6509 (2004).
[Crossref] [PubMed]

Jenkins, T. P.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

Jiang, J. Y.

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

Kluczynski, P.

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
[Crossref]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Kusanagi, S.

Lempert, W. R.

Li, H.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

Liu, J. T. C.

Liu, X.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

Looney, J. P.

Meyer, T. R.

Miles, R. B.

Miller, J. D.

Nagali, V.

Nishida, Y.

Perrin, M. Y.

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band,” J. Quant. Spectrosc. Radiat. Transf. 42(4), 311–317 (1989).
[Crossref]

Philippe, L. C.

Pitz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Rieker, G. B.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Roy, S.

Sanders, S. T.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

Sasada, H.

Schauer, F. R.

Schultz, I. A.

Silver, J. A.

Socha, J. G.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Spearrin, R. M.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

Stanton, A. C.

Stein, B. A.

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

Strand, C. L.

Sun, K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Sur, R.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

Tadanaga, O.

Takenouchi, H.

Teichert, H.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Wolfrum, J.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Zhang, B.

Appl. Opt. (11)

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
[Crossref] [PubMed]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31(6), 718–731 (1992).
[Crossref] [PubMed]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32(30), 6090–6103 (1993).
[Crossref] [PubMed]

V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36(36), 9518–9527 (1997).
[Crossref] [PubMed]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38(27), 5803–5815 (1999).
[Crossref] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43(35), 6500–6509 (2004).
[Crossref] [PubMed]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, F. R. Schauer, and J. R. Gord, “Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers,” Appl. Opt. 52(12), 2893–2904 (2013).
[Crossref] [PubMed]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

Appl. Phys. B (7)

B. A. Stein, V. Jayaraman, J. Y. Jiang, A. Cable, and S. T. Sanders, “Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321–1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL,” Appl. Phys. B 108(4), 721–725 (2012).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B 106(4), 987–997 (2012).
[Crossref]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B 110(4), 497–508 (2013).
[Crossref]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75(2-3), 229–236 (2002).
[Crossref]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases,” Appl. Phys. B 116(3), 705–716 (2014).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]

Atmos. Res. (1)

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23(3-4), 229–241 (1989).
[Crossref]

Electron. Lett. (1)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Fuel (1)

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

J. Appl. Phys. (1)

R. Arndt, “Analytical Line Shapes for Lorentzian Signals Broadened by Modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band,” J. Quant. Spectrosc. Radiat. Transf. 42(4), 311–317 (1989).
[Crossref]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “High-pressure measurements of CO2 absorption near 2.7 μm: Line mixing and finite duration collision effects,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 949–960 (2010).
[Crossref]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Opt. Express (2)

Opt. Spectrosc. (1)

G. Gao, B. Chen, and T. Cai, “Simultaneous detection of CO and CO2 at elevated temperatures using tunable diode laser absorption spectroscopy near 1570 nm,” Opt. Spectrosc. 114(3), 340–346 (2013).
[Crossref]

Proc. Combust. Inst. (4)

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33(1), 1–40 (2011).
[Crossref]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28(1), 587–594 (2000).
[Crossref]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28(1), 423–430 (2000).
[Crossref]

Other (5)

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography,” in C. Lei and K. D. Choquette, eds. (2012), p. 82760D.

“Monthly Energy Review January 2016,” U.S. Energy Information Administration.

C. E. Dedic, J. B. Michael, J. D. Miller, and T. R. Meyer, “Evaluation of Hybrid fs/ps coherent anti-Stokes Raman scattering temperature and pressure sensitivity at combustor relevant conditions,” in (American Institute of Aeronautics and Astronautics, 2016).

D. J. Gardiner and P. R. Graves, Practical Raman Spectroscopy (Springer Science & Business Media, 2012).

“Modeling MEMS and NEMS,” https://www.crcpress.com/Modeling-MEMS-and-NEMS/Pelesko-Bernstein/p/book/9781584883067 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Room temperature absorbance spectrum of carbon dioxide (CO2) at 1 atm and 50 atm, with the corresponding fast-scanning ranges of a traditional DFB diode laser and a MEMS-VCSEL laser (5% CO2 in air, 100 cm path length). (b) Simulated 2f peak signal for CO2 using a DFB and the MEMS-VCSEL laser centered around 1570 nm, normalized to the MEMS case, at a series of pressures. As pressure rises above a few atmospheres the DFB laser can no longer reach the optimal modulation amplitude for the broadening absorption conditions.

Fig. 2
Fig. 2

(a) Sinusoidal voltage input signal to the laser used to modulate the laser wavelength (100 kHz modulation frequency); (b) Resulting intensity variation as a function of time, measured concurrently with the voltage input; (c) Voltage input signal as center wavelength is tuned with additional 500 Hz voltage sweep; (d) Resulting intensity variation for one full voltage sweep with fast modulation applied.

Fig. 3
Fig. 3

(a) Transmitted intensity through the SRM 2515 CO cell as a function of time when the fast sine wave voltage modulation is applied to the laser. Variations in the baseline laser intensity through the CO cell are due in part to the nonlinear laser intensity modulation of the source and etalon effects in the un-optimized reference cell; (b) Wavelength as a function of time determined from the data in the left panel: location of CO absorption peaks (points) and curve fit (line).

Fig. 4
Fig. 4

(a) Sinusoidal voltage input signal to the laser used to modulate the laser wavelength (100 kHz modulation frequency); (b) Resulting wavelength variation as a function of time; (c) Voltage input signal as center wavelength is tuned with additional 500 Hz voltage sweep; (d) Resulting wavelength variation for one full voltage sweep with fast modulation applied.

Fig. 5
Fig. 5

Experimental setup for large amplitude WMS of high pressure CO2 using a MEMS-VCSEL. The laser intensity is characterized simultaneously with the high pressure cell measurements, and the wavelength is characterized before or after the experiment. The system listed as the DAQ system is a desktop computer with a NI PCI 6110 while the fast DAQ is the NI PXIe-7975R.

Fig. 6
Fig. 6

(a) Simulated and measured second harmonic signal for 14.7% CO2 mixed with air at 30 amagat (32.7 atm at 295K). (b) Simulated and measured second harmonic signal for 12% CO2 mixed with air at a density of 46 amagat (50.5 atm at 300K). The red dash trace was obtained by scaling the simulated Voigt profile with a modified χ-function correction to account for non-Lorentzian lineshape effects that occur at high density, and by optimizing the wavelength modulation parameters within their characterization uncertainty.

Fig. 7
Fig. 7

(a) Simulated second harmonic signal for four different CO2 mole fractions in air at room temperature, 101 cm path length and 32.7 atm. (b) The maximum 2f value from the graph on the left as a function of mole fraction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I t (t)= I 0 (t) e α(λ(t)))
I 0 =( I ref,sample I ref,na ) I na
λ(t)=( λ 0 + λ 1 t+ λ 2 t 2 )+( a 0 + a 1 t+ a 2 t 2 )sin(2πft+ ϕ 1 )+( b 0 + b 1 t+ b 2 t 2 )sin(4πft+ ϕ 2 )
2f= (2 f x,signal 2 f x,background ) 2 + (2 f y,signal 2 f x,background ) 2

Metrics