Abstract

A gas pressure sensor based on an antiresonant reflecting guidance mechanism in a hollow-core fiber (HCF) with an open microchannel is experimentally demonstrated for gas pressure sensing. The microchannel was created on the ring cladding of the HCF by femtosecond laser drilling to provide an air-core pressure equivalent to the external environment. The HCF cladding functions as an antiresonant reflecting waveguide, which induces sharp periodic lossy dips in the transmission spectrum. The proposed sensor exhibits a high pressure sensitivity of 3.592 nm/MPa and a low temperature cross-sensitivity of 7.5 kPa/°C. Theoretical analysis indicates that the observed high gas pressure sensitivity originates from the pressure induced refractive index change of the air in the hollow-core. The good operation durability and fabrication simplicity make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in harsh environments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Antiresonant mechanism based self-temperature-calibrated fiber optic Fabry–Perot gas pressure sensors

Hongchun Gao, Yi Jiang, Liuchao Zhang, Yang Cui, Yuan Jiang, Jingshan Jia, and Lan Jiang
Opt. Express 27(16) 22181-22189 (2019)

Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk

Ran Gao, Danfeng Lu, Jin Cheng, and Zhi-mei Qi
Opt. Express 25(15) 18081-18091 (2017)

Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer

Zhengyong Li, Changrui Liao, Yiping Wang, Lei Xu, Dongning Wang, Xiaopeng Dong, Shen Liu, Qiao Wang, Kaiming Yang, and Jiangtao Zhou
Opt. Express 23(5) 6673-6678 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  2. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  3. J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
    [Crossref]
  4. X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
    [Crossref] [PubMed]
  5. Z. Liu, M. L. V. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
    [Crossref] [PubMed]
  6. Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
    [Crossref] [PubMed]
  7. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref] [PubMed]
  8. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [Crossref] [PubMed]
  9. L. Jin, B. Guan, and H. Wei, “Sensitivity characteristics of Fabry–Pérot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
    [Crossref]
  10. Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
    [Crossref] [PubMed]
  11. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  12. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
    [Crossref] [PubMed]
  13. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref] [PubMed]
  14. M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-Enhanced pressure sensor with Hollow-Core photonic crystal fiber,” J. Lightwave Technol. 32(3), 4035–4039 (2014).
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  16. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  17. P. Rugeland, C. Sterner, and W. Margulis, “Visible light guidance in silica capillaries by antiresonant reflection,” Opt. Express 21(24), 29217–29222 (2013).
    [Crossref] [PubMed]
  18. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  19. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref] [PubMed]
  20. S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
    [Crossref] [PubMed]
  21. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  22. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  23. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
    [Crossref] [PubMed]
  24. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).
  25. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
    [Crossref] [PubMed]
  26. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  27. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
    [Crossref]
  28. K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  29. W. D. Pilkey, Peterson’s Stress Concentraton Factors 2nd ed. (NY, USA: Wiley, 1999).
  30. M. Pang, H. F. Xuan, J. Ju, and W. Jin, “Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers,” Opt. Express 18(13), 14041–14055 (2010).
    [Crossref] [PubMed]
  31. Y. Cao, W. Jin, F. Yang, and H. L. Ho, “Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure,” Opt. Express 22(11), 13190–13201 (2014).
    [Crossref] [PubMed]
  32. A. Michie, J. Canning, K. Lyytikäinen, M. Aslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Opt. Express 12(21), 5160–5165 (2004).
    [Crossref] [PubMed]

2017 (1)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

2016 (1)

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

2015 (4)

2014 (4)

2013 (6)

2012 (4)

2010 (3)

2008 (2)

2007 (1)

2006 (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

1993 (1)

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Abeeluck, A. K.

Aslund, M.

Belardi, W.

Birch, K. P.

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Burger, S.

Canning, J.

Cao, Y.

Chang, H. C.

Chen, D.

Cheng, J.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

Chitaree, R.

Dai, J. Y.

de Sterke, C. M.

Digweed, J.

Dong, X.

Downs, M. J.

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Dunn, S. C.

Eggleton, B. J.

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Fu, H. Y.

Gao, R.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Guan, B.

Guo, J.

Han, M.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Headley, C.

Ho, H. L.

Hou, M.

Hu, T.

Jiang, L.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

Jiang, Y.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Jin, L.

Jin, W.

Ju, J.

Khijwania, S. K.

Knight, J. C.

Lai, C. H.

Li, C.

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Li, Z.

Liao, C.

Liao, C. R.

Litchinitser, N. M.

Liu, N.

S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
[Crossref] [PubMed]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Liu, S.

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-Enhanced pressure sensor with Hollow-Core photonic crystal fiber,” J. Lightwave Technol. 32(3), 4035–4039 (2014).

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
[Crossref] [PubMed]

Liu, T. A.

Liu, Z.

Lu, C.

Lu, D.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

Lu, D. F.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Lu, J. Y.

Lu, L.

Lu, P.

Lu, W.

Lyytikäinen, K.

Ma, J.

Margulis, W.

McPhedran, R. C.

Michie, A.

Pang, M.

Pearce, G. J.

Peng, J. L.

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Poulton, C. G.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

Qi, Z. M.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Rao, Y. J.

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Ren, D.

Rugeland, P.

Russell, J.

Shao, L.-Y.

Shi, X.

Sterner, C.

Sun, C. K.

Talataisong, W.

Tam, H. Y.

Tang, J.

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

Tse, M. L. V.

Usner, B.

Wai, P. K. A.

Wang, C.

Wang, D.

Wang, D. N.

Wang, Q.

Wang, Y.

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-Enhanced pressure sensor with Hollow-Core photonic crystal fiber,” J. Lightwave Technol. 32(3), 4035–4039 (2014).

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
[Crossref] [PubMed]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref] [PubMed]

Wei, H.

White, T. P.

Wiederhecker, G. S.

Wu, C.

Xu, F.

Xu, L.

Xuan, H. F.

Yang, F.

Yang, K.

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

Yin, G.

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

You, B.

Yu, B.

Zhang, Q.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Zhao, J.

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

Zhao, Y.

Zheltikov, A. M.

Zhong, X.

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

Zhou, J.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

IEEE Photon. J. (1)

J. Tang, G. Yin, S. Liu, X. Zhong, C. Liao, Z. Li, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “Gas pressure sensor based on CO2-Laser-Induced Long-Period fiber grating in Air-Core photonic bandgap fiber,” IEEE Photon. J. 7(5), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

J. Lightwave Technol. (2)

Metrologia (1)

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Opt. Express (13)

M. Pang, H. F. Xuan, J. Ju, and W. Jin, “Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers,” Opt. Express 18(13), 14041–14055 (2010).
[Crossref] [PubMed]

Y. Cao, W. Jin, F. Yang, and H. L. Ho, “Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure,” Opt. Express 22(11), 13190–13201 (2014).
[Crossref] [PubMed]

A. Michie, J. Canning, K. Lyytikäinen, M. Aslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Opt. Express 12(21), 5160–5165 (2004).
[Crossref] [PubMed]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

Z. Liu, M. L. V. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
[Crossref] [PubMed]

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

P. Rugeland, C. Sterner, and W. Margulis, “Visible light guidance in silica capillaries by antiresonant reflection,” Opt. Express 21(24), 29217–29222 (2013).
[Crossref] [PubMed]

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (8)

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
[Crossref] [PubMed]

S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
[Crossref] [PubMed]

W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Sens. Actuat. Biol. Chem. (1)

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. Biol. Chem. 222, 618–624 (2016).

Other (1)

W. D. Pilkey, Peterson’s Stress Concentraton Factors 2nd ed. (NY, USA: Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Pictorial view of the designed pressure sensor based on an antiresonant reflecting guidance (ARRG) mechanism in a hollow-core fiber (HCF). (b) Side-view and (c) top-view optical microscopy images of the microchannel created by femtosecond laser micromachining. (d) Transmission spectra of the ARRG-based pressure sensor with an HCF length of 5 mm before and after microchannel fabrication.
Fig. 2
Fig. 2 (a) Schematic diagram of an HCF cross section with cladding of thickness d and index of refraction n2. The indices of refraction of the hollow core and external environment are n1 and n3, respectively. (b) The optical pathways at the HCF interfaces.
Fig. 3
Fig. 3 (a) Simulation and measured transmission spectra. (b) and (c) Intensity distributions of near-mode field patterns corresponding to the wavelengths of 1535.8 and 1538.08 nm for the specimen with an HCF length of 5 mm.
Fig. 4
Fig. 4 Experiment setup for gas pressure measurements employing a broadband light source ranging from 1250 to 1650 nm and an optical spectrum analyzer.
Fig. 5
Fig. 5 Transmission spectra evolution of the opened cavity sensors (a) L 2 = 5 mm and (c) L 2 = 2 mm while the gas pressure increases from 0 to 2 MPa. Measured resonant wavelength of the two sensors (b) L 2 = 5 mm and (d) L 2 = 2 mm versus gas pressure.
Fig. 6
Fig. 6 Distribution of (a) radial strain, (b) azimuthal strain and (c) radial displacement of HCF for different pressures applied.
Fig. 7
Fig. 7 The changes for individual refractive index component of silica cladding region for a 2 MPa pressure applied.
Fig. 8
Fig. 8 (a) Transmission spectrum evolution of an ARRG-based pressure sensor (L = 5 mm) with respect to temperature. (b) Wavelength shifts of resonance dip with increasing temperature form 20°C to 500°C.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 d m n 2 2 n 1 2
λ m P = S air + S structure + S silica = 2 d n 1 m n 2 2 n 1 2 n 1 P + 2 n 2 2 n 1 2 m d P + 2 d n 2 m n 2 2 n 1 2 n 2 P
n 3 = n 1 = 1 + 2.8793 * 10 9 * P 1 + 0.003671 * T .
{ σ r = A r 2 + 2 C σ θ = A r 2 + 2 C σ z = D ,
{ ε r = 1 E si [ σ r v s i ( σ r + σ r ) ] = 1 E si [ ( 1 + v s i ) A r 2 + 2 C ( 1 v s i ) v s i D ] ε θ = 1 E si [ σ θ v s i ( σ r + σ z ) ] = 1 E si [ ( 1 + v s i ) A r 2 + 2 C ( 1 v s i ) v s i D ] ε z = 1 E si [ σ z v s i ( σ r + σ θ ) ] = 1 E si [ D 4 v s i C ] .
{ σ r = r 11 = -P σ r = r 12 = P π σ z ( r 11 2 r 12 2 ) + P π r 11 2 = 0 .
{ Δ n r = 1 2 n 0 3 ( p 11 ε r + p 12 ε θ ) Δ n θ = 1 2 n 0 3 ( p 12 ε r + p 11 ε θ ) Δ n z = 1 2 n 0 3 ( p 12 ε r + p 12 ε θ ) ,
λ m T = 2 d n 2 m n 2 2 n 1 2 * d n s i l i c a d T ,

Metrics