Abstract

A high-power transverse-mode-switchable all-fiber picosecond laser in a master-oscillator power-amplifier (MOPA) configuration is demonstrated. The master oscillator is a gain-switched laser diode delivering picosecond pulses with 25 MHz repetition rate at the wavelength of 1.06 μm. After multi-stage amplification in ytterbium-doped fibers, the average output power is scaled to 117 W. A mechanical long-period grating is employed as a fiber mode convertor to achieve controllable conversion from the fundamental (LP01) to the second-order (LP11) mode. Efficient mode conversion is demonstrated and the output characteristics for both modes are investigated. It is shown that LP01 and LP11 modes have nearly identical optical-to-optical conversion efficiency during amplification, but the nonlinear spectral degradation is significantly alleviated for LP11 mode operation. Owing to the compact all-fiber architecture, this high-power transverse-mode-switchable fiber laser is reliable during long-term operation and thus promising for many practical applications, e.g. high-resolution laser micro-processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power LP11 mode supercontinuum generation from an all-fiber MOPA

Xin Yang, Ze-Hua Xu, Sheng-Ping Chen, and Zong-Fu Jiang
Opt. Express 26(11) 13740-13745 (2018)

500 W level MOPA laser with switchable output modes based on active control

Rongtao Su, Baolai Yang, Xiaoming Xi, Pu Zhou, Xiaolin Wang, Yanxing Ma, Xiaojun Xu, and Jinbao Chen
Opt. Express 25(19) 23275-23282 (2017)

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

Jiang Liu, Qian Wang, and Pu Wang
Opt. Express 20(20) 22442-22447 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
    [Crossref] [PubMed]
  2. K. K. Chen, J. H. V. Price, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing microJ pulses tunable in duration from 1 to 21 ps,” Opt. Express 18(14), 14385–14394 (2010).
    [Crossref] [PubMed]
  3. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “157 W all-fiber high-power picosecond laser,” Appl. Opt. 51(13), 2497–2500 (2012).
    [Crossref] [PubMed]
  4. H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
    [Crossref]
  5. P. S. Teh, R. J. Lewis, S.-U. Alam, and D. J. Richardson, “200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA,” Opt. Express 21(22), 25883–25889 (2013).
    [Crossref] [PubMed]
  6. T. Omatsu, “Optical vortex lasers for chiral material science,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF2A.6.
    [Crossref]
  7. K. Venkatakrishnan and B. Tan, “Generation of radially polarized beam for laser micromachining,” J. Laser Micro Nanoeng. 7(3), 274–278 (2012).
    [Crossref]
  8. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [Crossref] [PubMed]
  9. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  10. J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35(11), 1828–1830 (2010).
    [Crossref] [PubMed]
  11. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [Crossref] [PubMed]
  12. J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
    [Crossref] [PubMed]
  13. B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38(5), 667–669 (2013).
    [Crossref] [PubMed]
  14. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41(3), 548–550 (2016).
    [Crossref] [PubMed]
  15. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]
  16. D. Lin and W. A. Clarkson, “Polarization-dependent transverse mode selection in an Yb-doped fiber laser,” Opt. Lett. 40(4), 498–501 (2015).
    [Crossref] [PubMed]
  17. Y. Jung, Z. Li, N. H. L. Wong, J. Daniel, J. K. Sahu, S. Alam, and D. J. Richardson, “Spatial mode switchable, wavelength tunable erbium-doped fiber laser incorporating a spatial light modulator,” in Optical Fiber Communication Conference (2014), paper Tu3D.4.
    [Crossref]
  18. X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
    [Crossref]
  19. A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
    [Crossref] [PubMed]
  20. D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117(1), 459–464 (2014).
    [Crossref]
  21. S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
    [Crossref] [PubMed]
  22. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
    [Crossref] [PubMed]
  23. M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
    [Crossref]
  24. X. Zhou, S. Shi, Z. Zhang, J. Zou, and Y. Liu, “Mechanically-induced π-shifted long-period fiber gratings,” Opt. Express 19(7), 6253–6259 (2011).
    [Crossref] [PubMed]
  25. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9(5), 177–179 (1984).
    [Crossref] [PubMed]
  26. I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
    [Crossref]
  27. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
    [Crossref] [PubMed]
  28. A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber,” J. Lightwave Technol. 30(4), 634–640 (2012).
    [Crossref]
  29. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]

2016 (1)

2015 (2)

D. Lin and W. A. Clarkson, “Polarization-dependent transverse mode selection in an Yb-doped fiber laser,” Opt. Lett. 40(4), 498–501 (2015).
[Crossref] [PubMed]

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

2014 (5)

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117(1), 459–464 (2014).
[Crossref]

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (5)

A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber,” J. Lightwave Technol. 30(4), 634–640 (2012).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “157 W all-fiber high-power picosecond laser,” Appl. Opt. 51(13), 2497–2500 (2012).
[Crossref] [PubMed]

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

K. Venkatakrishnan and B. Tan, “Generation of radially polarized beam for laser micromachining,” J. Laser Micro Nanoeng. 7(3), 274–278 (2012).
[Crossref]

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

2011 (4)

2010 (2)

2009 (1)

2008 (1)

2006 (1)

2000 (1)

1984 (1)

Al Amin, A.

Alam, S.-U.

Amin, A. A.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Beresna, M.

Birks, T. A.

Brooks, J. L.

Chan, J. S. P.

Chen, H. W.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

Chen, H.-W.

Chen, K. K.

Chen, R.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Chen, S.

Chen, S. P.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

Chen, S.-P.

Chen, X.

Chung, D.

Clarkson, W. A.

Daniel, J. M. O.

Dimarcello, F. V.

Du, X.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Gao, G.

Gecevicius, M.

Ghalmi, S.

Giles, D.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Giles, I.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Goldberg, L.

Gu, C.

Hayes, J. R.

Hirose, T.

Hou, J.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “157 W all-fiber high-power picosecond laser,” Appl. Opt. 51(13), 2497–2500 (2012).
[Crossref] [PubMed]

S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

Ibsen, M.

Kanazawa, S.

Kazansky, P. G.

Kim, D. J.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117(1), 459–464 (2014).
[Crossref]

Kim, J. W.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117(1), 459–464 (2014).
[Crossref]

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

Kliner, D. A. V.

Koplow, J. P.

Koyama, M.

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

Kozawa, Y.

Lei, Y.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

Leon-Saval, S. G.

Lewis, R. J.

Li, A.

Li, F.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Lin, D.

Lin, Z.

Liu, Y.

Liu, Z.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Liu, Z.-J.

Lu, Q.

Lu, Q. S.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

Ma, P.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Malinowski, A.

Marciante, J. R.

Ming, H.

Miyamoto, K.

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

Monberg, E.

Nicholson, J. W.

Obeysekara, A.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Okida, M.

Omatsu, T.

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

Pham, A.

Poletti, F.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Price, J. H. V.

Ramachandran, S.

Richardson, D.

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Richardson, D. J.

Rockwell, D. A.

Roides, R. G.

Sahu, J. K.

Sato, S.

Shaw, H. J.

Shi, S.

Shieh, W.

Shimomura, A.

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

Shkunov, V. V.

Song, R.

Sun, B.

Tan, B.

K. Venkatakrishnan and B. Tan, “Generation of radially polarized beam for laser micromachining,” J. Laser Micro Nanoeng. 7(3), 274–278 (2012).
[Crossref]

Teh, P. S.

Venkatakrishnan, K.

K. Venkatakrishnan and B. Tan, “Generation of radially polarized beam for laser micromachining,” J. Laser Micro Nanoeng. 7(3), 274–278 (2012).
[Crossref]

Wang, A.

Wang, X.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Wisk, P.

Witkowska, A.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xu, L.

Yan, M. F.

Yang, W.

Youngquist, R. C.

Zhan, Q.

Zhang, H.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Zhang, Z.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhou, P.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Zhou, X.

Zhou, Y.

Zou, J.

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117(1), 459–464 (2014).
[Crossref]

Appl. Phys. B Lasers Opt. (2)

M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, “Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier,” Appl. Phys. B Lasers Opt. 116(2), 249–254 (2014).
[Crossref]

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core,” Appl. Phys. B Lasers Opt. 109(2), 233–238 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG mode converters and mode selection technique for multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

J. Laser Micro Nanoeng. (1)

K. Venkatakrishnan and B. Tan, “Generation of radially polarized beam for laser micromachining,” J. Laser Micro Nanoeng. 7(3), 274–278 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Opt. Express (8)

P. S. Teh, R. J. Lewis, S.-U. Alam, and D. J. Richardson, “200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA,” Opt. Express 21(22), 25883–25889 (2013).
[Crossref] [PubMed]

J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
[Crossref] [PubMed]

S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

K. K. Chen, J. H. V. Price, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing microJ pulses tunable in duration from 1 to 21 ps,” Opt. Express 18(14), 14385–14394 (2010).
[Crossref] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

X. Zhou, S. Shi, Z. Zhang, J. Zou, and Y. Liu, “Mechanically-induced π-shifted long-period fiber gratings,” Opt. Express 19(7), 6253–6259 (2011).
[Crossref] [PubMed]

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
[Crossref] [PubMed]

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

Opt. Lett. (10)

J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35(11), 1828–1830 (2010).
[Crossref] [PubMed]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
[Crossref] [PubMed]

R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9(5), 177–179 (1984).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
[Crossref] [PubMed]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

D. Lin and W. A. Clarkson, “Polarization-dependent transverse mode selection in an Yb-doped fiber laser,” Opt. Lett. 40(4), 498–501 (2015).
[Crossref] [PubMed]

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41(3), 548–550 (2016).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38(5), 667–669 (2013).
[Crossref] [PubMed]

Other (2)

Y. Jung, Z. Li, N. H. L. Wong, J. Daniel, J. K. Sahu, S. Alam, and D. J. Richardson, “Spatial mode switchable, wavelength tunable erbium-doped fiber laser incorporating a spatial light modulator,” in Optical Fiber Communication Conference (2014), paper Tu3D.4.
[Crossref]

T. Omatsu, “Optical vortex lasers for chiral material science,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF2A.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the transverse-mode-switchable all-fiber MOPA. MFA, mode field adapter. LD, laser diode. LMA-YDF, large-mode-area ytterbium doped fiber. DCF, double-clad fiber.
Fig. 2
Fig. 2 Schematic of the fiber mode convertor for a large-mode-area double-clad fiber (LMA-DCF). LPG, long-period grating.
Fig. 3
Fig. 3 Dependence of LP01-LP11 modal beat length on the numerical aperture and core diameter of large-mode-area few-mode fibers.
Fig. 4
Fig. 4 (a) Output power characteristics of the pre-amplifier and conversion efficiency of the mode convertor. (b) Out spectrum of the pre-amplifier at 11.5 W pump power. The inset shows the details of the spectral curve.
Fig. 5
Fig. 5 Output power characteristics and pump-to-signal conversion efficiency of the power amplifier operating in (a) LP01 and (b) LP11 mode, respectively. The insets are the corresponding output mode profiles.
Fig. 6
Fig. 6 Out spectrum of the power amplifier at maximum pump power for LP01 (green) and LP11 (blue) modes, respectively. The inset shows the details of the spectral curves.

Metrics