Abstract

We demonstrate the potential of spatial light modulators for the spectral control of a broadband source in digital holographic microscopy. Used in a ‘pulse-shaping’ geometry, the spatial light modulator provides a versatile control over the bandwidth and wavelength of the light source. The control of these properties enables adaptation to various experimental conditions. As a first application, we show that the source bandwidth can be adapted to the off-axis geometry to provide quantitative phase imaging over the whole field of view. As a second application, we generate sequences of appropriate wavelengths for a hierarchical optical phase unwrapping algorithm, which enables the measurement of the topography of high-aspect ratio structures without phase ambiguity. Examples are given with step heights up to 50 µm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube

J. A. Picazo-Bueno, M. Trusiak, and V. Micó
Opt. Express 27(4) 5655-5669 (2019)

Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition

Jonas Kühn, Tristan Colomb, Frédéric Montfort, Florian Charrière, Yves Emery, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Opt. Express 15(12) 7231-7242 (2007)

Imaging in digital holographic microscopy

Shan Shan Kou and Colin J. R. Sheppard
Opt. Express 15(21) 13640-13648 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref] [PubMed]
  3. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
    [Crossref] [PubMed]
  4. P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).
  5. P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
    [Crossref]
  6. B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
    [Crossref]
  7. H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
    [Crossref] [PubMed]
  8. M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
    [Crossref] [PubMed]
  9. Y. Emery, N. Aspert, and F. Marquet, “Dynamical topography measurements of MEMS up to 25 MHz, through transparent window, and in liquid by Digital Holographic Microscope (DHM),” in AIP Conference Proceedings (AIP Publishing, 2012), pp. 71–77.
  10. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
    [Crossref]
  11. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref] [PubMed]
  13. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [Crossref] [PubMed]
  14. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [Crossref] [PubMed]
  15. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
    [Crossref] [PubMed]
  16. L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
    [Crossref] [PubMed]
  17. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19, 24005–24022 (2011).
    [Crossref] [PubMed]
  18. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
    [Crossref] [PubMed]
  19. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012).
    [Crossref] [PubMed]
  20. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).
    [Crossref]
  21. J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39, 47–51 (2000).
    [Crossref]
  22. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
    [Crossref] [PubMed]
  23. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34, 1879–1881 (2009).
    [Crossref] [PubMed]
  24. N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20, 22636–22648 (2012).
    [Crossref] [PubMed]
  25. H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37, 3438–3440 (2012).
    [Crossref]
  26. D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
    [Crossref] [PubMed]
  27. J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
    [Crossref] [PubMed]
  28. W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
    [Crossref]
  29. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
    [Crossref]
  30. W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
    [Crossref]
  31. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [Crossref]
  32. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
    [Crossref] [PubMed]
  33. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006).
    [Crossref] [PubMed]
  34. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600 (2007).
    [Crossref] [PubMed]
  35. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref] [PubMed]
  36. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [Crossref] [PubMed]
  37. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
    [Crossref] [PubMed]
  38. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
    [Crossref] [PubMed]
  39. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15, 9239–9247 (2007).
    [Crossref] [PubMed]
  40. S. Jeon, J. Cho, J.-n. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
    [Crossref] [PubMed]
  41. C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22, 5133–5146 (2014).
    [Crossref] [PubMed]
  42. V. Y. Molchanov and K. B. Yushkov, “Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions,” Opt. Express 22, 15668–15678 (2014).
    [Crossref] [PubMed]
  43. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  44. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  45. L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
    [Crossref] [PubMed]
  46. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
    [Crossref] [PubMed]
  47. J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
    [Crossref]
  48. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30, 323–325 (2005).
    [Crossref] [PubMed]
  49. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
    [Crossref] [PubMed]
  50. Jonas Kühn, “Multiple-wavelength digital holographic microscopy,” Ph.D. thesis, EPFL, Lausanne (2009).
  51. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [Crossref] [PubMed]
  52. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [Crossref] [PubMed]
  53. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002).
    [Crossref] [PubMed]
  54. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
    [Crossref] [PubMed]
  55. T. Nguyen, G. Nehmetallah, C. Raub, S. Mathews, and R. Aylo, “Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations,” Appl. Opt. 55, 5666–5683 (2016).
    [Crossref] [PubMed]

2016 (5)

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

S. Jeon, J. Cho, J.-n. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
[Crossref] [PubMed]

T. Nguyen, G. Nehmetallah, C. Raub, S. Mathews, and R. Aylo, “Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations,” Appl. Opt. 55, 5666–5683 (2016).
[Crossref] [PubMed]

2014 (3)

2013 (3)

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (4)

2010 (2)

2009 (1)

2008 (3)

2007 (4)

2006 (4)

2005 (4)

2003 (3)

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002).
[Crossref] [PubMed]

2001 (1)

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

2000 (2)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39, 47–51 (2000).
[Crossref]

1999 (2)

1996 (1)

W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
[Crossref]

1994 (1)

1990 (1)

Abdelsalam, D. G.

Adinda-Ougba, A.

Akcay, C.

Anand, A.

Andrä, P.

W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
[Crossref]

Aspert, N.

Awatsuji, Y.

Aylo, R.

Baumbach, T.

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

Becq, F.

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

Bhaduri, B.

Bingham, P. R.

Boinot, C.

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

Boss, D.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

Camacho, L.

Charrière, F.

Chi, J.-T. A.

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Cho, J.

Choma, M.

Clark, R. L.

Colomb, T.

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

Cuche, E.

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

Dakoff, A.

de Groot, P.

De Nicola, S.

Deck, L.

Depeursinge, C.

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19, 24005–24022 (2011).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

Depeursinge, C. D.

Ding, H.

Dubey, S.

Edwards, C.

Emery, Y.

Fercher, A.

Ferraro, P.

Feurer, T.

Finizio, A.

García, J.

Gass, J.

Gerhardt, N. C.

Gillette, M. U.

Gleichman, K. W.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39, 47–51 (2000).
[Crossref]

Goddard, L. L.

Goebel, S.

Götte, M.

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

Greve, B.

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

Griffin, B. G.

Grilli, S.

Gu, Y.

J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
[Crossref]

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Hai, F.

J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
[Crossref]

Han, J.

J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
[Crossref]

Herminjard, S.

Hitzenberger, C.

Hofmann, M. R.

Höpfner, H.

Hornung, T.

Huang, M.

J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
[Crossref]

Izatt, J.

Jaedicke, V.

Jang, J.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
[Crossref] [PubMed]

Jenness, N. J.

Jeon, S.

Jin, J.-n.

Jourdain, P.

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

Jueptner, W. P. O.

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

Jung, J.-H.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
[Crossref] [PubMed]

Jung, W.

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Kemper, B.

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Ketelhut, S.

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

Kim, D.

Kim, M. K.

Kim, T.

Koukourakis, N.

Kühn, J.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

Kühn, Jonas

Jonas Kühn, “Multiple-wavelength digital holographic microscopy,” Ph.D. thesis, EPFL, Lausanne (2009).

Langehanenberg, P.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Laporta, P.

Lee, B. S.

Leitgeb, R.

Lengacher, S.

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

Lin, M.

Ma, L.

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Magistretti, P. J.

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

Magnusson, R.

Majeed, H.

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Mann, C. J.

Marquet, F.

Y. Emery, N. Aspert, and F. Marquet, “Dynamical topography measurements of MEMS up to 25 MHz, through transparent window, and in liquid by Digital Holographic Microscope (DHM),” in AIP Conference Proceedings (AIP Publishing, 2012), pp. 71–77.

Marquet, P.

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

Marron, J. C.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39, 47–51 (2000).
[Crossref]

Martinez-Leon, L.

Massatsch, P.

Mathews, S.

Matoba, O.

Mehta, D. S.

Miccio, L.

Micó, V.

Millet, L.

Min, E.

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Mir, M.

Molchanov, V. Y.

Monemhaghdoust, Z.

Montfort, F.

Moratal, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

Moser, C.

Nadeborn, W.

W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
[Crossref]

Nehmetallah, G.

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30, 323–325 (2005).
[Crossref] [PubMed]

Nguyen, T.

Nitanai, E.

Nitta, K.

Nomura, T.

Numata, T.

Okamura, M.

Osellame, R.

Osten, W.

L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
[Crossref] [PubMed]

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
[Crossref]

Paquit, V. C.

Park, H. S.

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Park, N.-C.

Park, Y.

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
[Crossref] [PubMed]

Park, Y.-P.

Parrein, P.

Parshall, D.

Paturzo, M.

Pavillon, N.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

Pedrini, G.

Pham, H.

Popescu, G.

Rappaz, B.

Raub, C.

Remmersmann, C.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Rinehart, M.

Rinehart, M. T.

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref] [PubMed]

Rogers, J.

Rolland, J. P.

Rothenfusser, K.

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

Sarunic, M.

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Seebacher, S.

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Shaked, N. T.

Shakher, C.

Sheoran, G.

Sridharan, S.

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Strand, T. C.

Stürwald, S.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Tobin, K. W.

Turner, D. B.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Unarunotai, S.

Vaughan, J. C.

von Bally, G.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Walzer, K. A.

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Wang, Z.

Warnasooriya, N.

Wax, A.

Wiethoff, H.

Yang, C.

Yushkov, K. B.

Zalevsky, Z.

Zhu, Y.

Anal. Chem. (1)

J.-H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging”, Anal. Chem. 85, 10519–10525 (2013).
[Crossref] [PubMed]

Appl. Opt. (13)

L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[Crossref] [PubMed]

L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
[Crossref] [PubMed]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
[Crossref] [PubMed]

T. Nguyen, G. Nehmetallah, C. Raub, S. Mathews, and R. Aylo, “Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations,” Appl. Opt. 55, 5666–5683 (2016).
[Crossref] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812 (2005).
[Crossref] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref] [PubMed]

D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[Crossref]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
[Crossref] [PubMed]

D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
[Crossref] [PubMed]

B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[Crossref] [PubMed]

C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18, 036007 (2013).
[Crossref] [PubMed]

J. Cell Sci. (1)

P. Jourdain, F. Becq, S. Lengacher, C. Boinot, P. J. Magistretti, and P. Marquet, “The human CFTR protein expressed in CHO cells activates an aquaporin 3 in a cAMP dependent pathway: study by Digital Holographic Microscopy,” J. Cell Sci. 127, 133629 (2013).

J. Mod. Opt. (1)

J. Han, F. Hai, Y. Gu, and M. Huang, “Digital holographic microscopy with sequential off-axis illumination directions based on spatial light modulator,” J. Mod. Opt. 61, 615–620 (2014).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Opt. Eng. (2)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39, 47–51 (2000).
[Crossref]

Opt. Express (15)

V. Y. Molchanov and K. B. Yushkov, “Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions,” Opt. Express 22, 15668–15678 (2014).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[Crossref] [PubMed]

S. Jeon, J. Cho, J.-n. Jin, N.-C. Park, and Y.-P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
[Crossref] [PubMed]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).
[Crossref] [PubMed]

N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20, 22636–22648 (2012).
[Crossref] [PubMed]

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600 (2007).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref] [PubMed]

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19, 24005–24022 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15, 9239–9247 (2007).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22, 5133–5146 (2014).
[Crossref] [PubMed]

Opt. Laser. Eng. (2)

W. Nadeborn, P. Andrä, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Laser. Eng. 24, 245–260 (1996).
[Crossref]

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[Crossref]

Opt. Lett. (8)

H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37, 3438–3440 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34, 1879–1881 (2009).
[Crossref] [PubMed]

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30, 323–325 (2005).
[Crossref] [PubMed]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref] [PubMed]

M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref] [PubMed]

PLOS ONE (1)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLOS ONE 7, e30912 (2012).
[Crossref] [PubMed]

Proc. SPIE (3)

B. Kemper, M. Götte, B. Greve, and S. Ketelhut, “Prospects and challenges of quantitative phase imaging in tumor cell biology,” Proc. SPIE 9718, 97180N (2016).
[Crossref]

P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P. J. Magistretti, “Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases,” Proc. SPIE 9718, 97180K (2016).
[Crossref]

W. Osten, S. Seebacher, T. Baumbach, and W. P. O. Jueptner, “Absolute shape control of microcomponents using digital holography and multiwavelength contouring,” Proc. SPIE 4275, 71–84 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Other (3)

Jonas Kühn, “Multiple-wavelength digital holographic microscopy,” Ph.D. thesis, EPFL, Lausanne (2009).

H. Majeed, S. Sridharan, M. Mir, L. Ma, E. Min, W. Jung, and G. Popescu, “Quantitative phase imaging for medical diagnosis,” J. Biophotonics, in press (2016).
[Crossref] [PubMed]

Y. Emery, N. Aspert, and F. Marquet, “Dynamical topography measurements of MEMS up to 25 MHz, through transparent window, and in liquid by Digital Holographic Microscope (DHM),” in AIP Conference Proceedings (AIP Publishing, 2012), pp. 71–77.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Sketch of the experimental setup: a DHM in reflection geometry (details in Section 2.2). BBS: Broadband source (supercontinuum laser). HWP: Half-wave plate. PBS: Polarizing beam splitter. L1L3 are spherical achromatic doublets. BS: Beam splitter. MO: microscope objective. Inset: Spectral control apparatus: “pulse-shaper” (details in Section 2.1). G: Transmission diffraction grating. CL: cylindrical lens. M: pick-up mirror. SLM: spatial light modulator. (b)–(d) Examples of SLM patterns. The spectral components of the incoming beam are mapped along the horizontal axis of the pattern. The 256 phase levels are encoded in gray scale for the figure. (b) is a simple sawtooth pattern to diffract the reflected beam upward. (c) adds a linear correction to the sawtooth frequency as a function of the horizontal coordinate, so that all spectral components diffract in the same direction. (d) is a combination of (c) with a gaussian amplitude filter to select a gaussian portion of the spectrum in the diffracted beam.
Fig. 2
Fig. 2 (a) Illumination spectra obtained with gaussian filters of different full width at half maximum (FWHM): Δλ = 21 nm, 4.8nm, and 0.94 nm, at center wavelength λ0 = 620.2 nm (solid lines). Dashed line: full illumination spectrum as obtained using SLM pattern of Fig. 1(c). (b)–(d) Reconstructed amplitude of Sample 1 obtained with the above-mentioned three different illumination bandwidths. Scale bar: 100 µm. (e) Reconstructed phase using Δλ = 0.94 nm. The phase gray scale ranges from −π (black) to π (white).
Fig. 3
Fig. 3 (a) Illumination spectra obtained with gaussian filters of different center wavelengths λ1 = 650.3 nm, λ2 = 559.7 nm, and λ3 = 575.3 nm, with bandwidth Δλ = 0.94 nm (solid lines). Dashed line: full illumination spectrum as obtained using SLM pattern of Fig. 1(b). Inset: Zoom on the spectrum of λ3 (dots) with a gaussian fit (solid line) (b) Phase map ϕ2 obtained using λ2 on Sample 1. Scale bar: 100 µm. The blue line shows the position of line profiles displayed in (c). (c) Line profiles of height maps h i = 1 , 2 , 3 = ϕ i λ i 4 π (without unwrapping).
Fig. 4
Fig. 4 (a) Line profile of H1,2 (obtained by combining phase information from measurements with λ1 and λ2), at the position shown by the blue line in Fig. 3(b). The height range is limited to Λ1,2/2 = 2.01 µm. (b) Line profile of H2,3. The height range is limited to Λ2,3/2 = 10.3 µm. (c) Line profile of H 1 , 2 , the height map obtained by unwrapping H1,2 using H2,3 as a guideline. (d) Line profile of the average of h i = 1 , 2 , 3 , the height maps obtained by unwrapping hi=1,2,3 using H 1 , 2 as a guideline. Inset: close-up view on the lower step. Horizontal subdivisions are 20 µm. Vertical subdivisions are 50 nm. (e) Full image of hOPU, the average of h i = 1 , 2 , 3 . Scale bar: 100 µm.
Fig. 5
Fig. 5 (a) OPU height map hOPU recorded from Sample 2. The dotted square shows the view area of the close up in (b)–(c). The dashed line is where the line profile of (d) is measured. Scale bar: 10 µm. (b) Close-up view of hOPU. (c) Reconstructed amplitude map of the same area. (d) Line profile of hOPU. A threshold based on the amplitude map as been applied to discard points where the phase is undefined.
Fig. 6
Fig. 6 (a) OPU height map hOPU of Sample 3. Scale bar: 20 µm. Inset: 3D view of the step reconstructed from hOPU. (b) Line profile of hOPU plotted on the full height range of the data. A threshold based on the amplitude map as been applied to discard points where the phase is undefined. (c) Same data as in (b) but with the vertical scale expanded to see details of the top and bottom parts of the step.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ( j ) m o d { i 255 p ( j ) , 255 } ,
l c = 4 l n ( 2 ) π λ 0 2 Δ λ .
w = l c s i n ( α ) = 4 l n ( 2 ) π λ 0 2 Δ λ s i n ( α ) .
Λ 1 , 2 < π 3 2 m i n i = 1 , 2 ( λ i ) σ ϕ ,
Λ i 1 , i < π 3 2 Λ i , i + 1 σ Φ ,

Metrics