Abstract

An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-line open-cavity Fabry–Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing

Chuang Wu, Zhengyong Liu, A. Ping Zhang, Bai-Ou Guan, and Hwa-Yaw Tam
Opt. Express 22(18) 21757-21766 (2014)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
    [Crossref]
  2. A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
    [Crossref]
  3. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
    [Crossref] [PubMed]
  4. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
    [Crossref] [PubMed]
  5. Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
    [Crossref] [PubMed]
  6. Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
    [Crossref] [PubMed]
  7. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
    [Crossref]
  8. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  9. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  10. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  11. K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
    [Crossref] [PubMed]
  12. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
    [Crossref] [PubMed]
  13. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  14. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
    [Crossref] [PubMed]
  15. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  16. Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
    [Crossref]
  17. N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
    [Crossref]
  18. S. Unterkofler, R. J. McQuitty, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. S. J. Russell, “Microfluidic integration of photonic crystal fibers for online photochemical reaction analysis,” Opt. Lett. 37(11), 1952–1954 (2012).
    [Crossref] [PubMed]
  19. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
    [Crossref] [PubMed]
  20. B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
    [Crossref] [PubMed]
  21. C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
    [Crossref] [PubMed]
  22. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  23. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  24. C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
    [Crossref]
  25. G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Opt. Commun. 208(4–6), 329–335 (2002).
    [Crossref]
  26. Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
    [Crossref] [PubMed]
  27. Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
    [Crossref]
  28. L. Jin, W. Jin, J. Ju, and Y. Wang, “Coupled local-mode theory for strongly modulated long period gratings,” J. Lightwave Technol. 28(12), 1745–1751 (2010).
    [Crossref]
  29. Z. Sun, Y. G. Liu, Z. Wang, B. Tai, T. Han, B. Liu, W. Cui, H. Wei, and W. Tong, “Long period grating assistant photonic crystal fiber modal interferometer,” Opt. Express 19(14), 12913–12918 (2011).
    [Crossref] [PubMed]
  30. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [Crossref] [PubMed]
  31. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  32. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref] [PubMed]
  33. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  34. T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
    [Crossref] [PubMed]
  35. W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Opt. Express 22(23), 28132–28141 (2014).
    [Crossref] [PubMed]
  36. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2016 (3)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

2014 (4)

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Opt. Express 22(23), 28132–28141 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (5)

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

S. Unterkofler, R. J. McQuitty, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. S. J. Russell, “Microfluidic integration of photonic crystal fibers for online photochemical reaction analysis,” Opt. Lett. 37(11), 1952–1954 (2012).
[Crossref] [PubMed]

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

2011 (5)

2010 (3)

2009 (3)

2008 (2)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2004 (1)

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (1)

G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Opt. Commun. 208(4–6), 329–335 (2002).
[Crossref]

1999 (1)

1996 (2)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

1965 (1)

Alkeskjold, T. T.

Altug, H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Auguste, J.-L.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Bjarklev, A.

Chen, Y.-F.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Chua, S. L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Coquet, P.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Cui, W.

Cui, Y.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Dinh, Q. X.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Dinh, X. Q.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Dinh, X.-Q.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Du, H.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Eggleton, B. J.

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Erickson, D.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Eskildsen, L.

Euser, T. G.

Fan, X.

Farrer, N. J.

Fink, Y.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Frye-Mason, G.

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Gong, T.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Guan, B.-O.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Guo, J.

Han, T.

Hao, P.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

He, S.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

He, Z.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Hong, L.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Hu, D. J. J.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Humbert, G.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Opt. Commun. 208(4–6), 329–335 (2002).
[Crossref]

Jain, A.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Jiang, L.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Jiang, M.

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Jin, L.

Jin, W.

Joannopoulos, J. D.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Joly, N. Y.

Ju, J.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Kuhlmey, B. T.

Kurabayashi, K.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Lai, Y.

Lavlinskaia, N.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Lee, B. H.

Lee, H. W.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Li, K.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

Li, S.

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref] [PubMed]

Li, Z.

Liao, C. R.

Lin, C. T.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Liu, B.

Liu, G.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

Liu, Y.

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Liu, Y. G.

Liu, Z.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Lu, C.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Luan, F.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Malitson, I. H.

Malki, A.

G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Opt. Commun. 208(4–6), 329–335 (2002).
[Crossref]

Mancuso, M.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

McQuitty, R. J.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Nishii, J.

Olivo, M.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Oncescu, V.

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Ouyang, Q.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Ping Shum, P.

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Qian, J.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Qu, J.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quyen Dinh, X.

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Russell, P. S.

Russell, P. S. J.

Sadler, P. J.

Scharrer, M.

Schmidt, M. A.

Scolari, L.

Seah, Y. P.

Shapira, O.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Shopova, S. I.

Shum, P. P.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Skerlos, S. J.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Sorin, F.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Stolyarov, A. M.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Sun, Y.

Sun, Z.

Tai, B.

Tam, H.-Y.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Tian, F.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Tong, W.

Tse, M.-L. V.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Tung, Y. C.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Tyagi, H.

Uebel, P.

Unterkofler, S.

Vengsarkar, A. M.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Wang, C.

Wang, D. N.

Wang, G.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Wang, S.

Wang, Y.

Wang, Z.

Wei, H.

Wei, L.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[Crossref] [PubMed]

Weirich, J.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Wu, C.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Wu, D. K. C.

Wu, Y.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

Wu, Z.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
[Crossref] [PubMed]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref] [PubMed]

Xu, G.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Xuan, H.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Yong, K.-T.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Yu, X.

Yuan, W.

Zeng, S.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Zhang, A. P.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

Zhang, B. M.

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref] [PubMed]

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Zhang, N.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Zhang, T.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, Z.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

Zhou, W.

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
[Crossref] [PubMed]

Zhu, Y.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. Ping Shum, and X. Quyen Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Biosens. Bioelectron. (1)

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

J. Lightwave Technol. (2)

L. Jin, W. Jin, J. Ju, and Y. Wang, “Coupled local-mode theory for strongly modulated long period gratings,” J. Lightwave Technol. 28(12), 1745–1751 (2010).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Nanoscale (1)

Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Opt. Commun. 208(4–6), 329–335 (2002).
[Crossref]

Opt. Express (9)

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref] [PubMed]

Z. Sun, Y. G. Liu, Z. Wang, B. Tai, T. Han, B. Liu, W. Cui, H. Wei, and W. Tong, “Long period grating assistant photonic crystal fiber modal interferometer,” Opt. Express 19(14), 12913–12918 (2011).
[Crossref] [PubMed]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref] [PubMed]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref] [PubMed]

T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21(1), 122–128 (2013).
[Crossref] [PubMed]

W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Opt. Express 22(23), 28132–28141 (2014).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Sci. Rep. (1)

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor,” Sci. Rep. 6, 28190 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2–3), 356–367 (2004).
[Crossref]

Talanta (1)

K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta 120, 419–424 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the in-line optofluidic sensing platform.
Fig. 2
Fig. 2 (a) SEM image of the SC-PCF; Simulated intensity distribution of LP01 mode (b) and LP11 mode (c) at the wavelength of 1550 nm with the side channel infiltrated with water; Simulated intensity distribution of LP01 mode (d) and LP11 mode (e) at 1550 nm in air infiltration condition; Intensity distribution of LP01 (f) and LP11 (g) mode at 1550 nm in air infiltration condition measured at the fiber output. (The gray lines depict the fiber structure in simulation).
Fig. 3
Fig. 3 (a) Calculated modal dispersion curves for LP01 (black square) and LP11 modes (red circle) in the condition that the side channel is filled with water, and for LP01 (green triangle) and LP11 modes (blue star) in the condition that the holy cladding is filled with air; (b) The calculated dependences of LPG pitch on resonant wavelength when the side channel is full of water (left axis, black curve) and air (left axis, blue curve), and the theoretical dependence of group ERI difference between LP01 and LP11 modes (right axis) on wavelength in selective water infiltration condition. (Inset)The microscope photo of the fabricated LPG with measurement of pitch.
Fig. 4
Fig. 4 Normalized transmission spectra, and (insets) measured intensity distribution at the resonant wavelength (1512 nm) and a non-resonant wavelength (1570 nm) under same excitation power.
Fig. 5
Fig. 5 (a) Normalized transmission spectra recorded when the side channel is infiltrated with liquids with different RIs; (b) Measured (black square) and simulated (blue triangles) evolutions of the resonance wavelength of resonant dip versus the RI contrast of the liquid (compared with water) circulated into the large channel of the SC-PCF with an LPG. The red line is linearly fitted to the measured wavelength shift of Dip 2 over the IR contrast range of 0-0.045 (corresponding to an absolute RI range of 1.3330-1.3780 measured with refractometer in the experiment).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψ=|( β core 11 L 1 + β core 01 L 2 )( β core 01 L 1 + β core 11 L 2 )|, =|( β core 01 β core 11 )( L 2 L 1 )|
Δλ=| λ 1 λ 2 Δ n g ( L 2 L 1 ) |,
Δ n g =Δ n eff λ d d λ Δ n eff .

Metrics