Abstract

We have developed and characterised a stable, narrow linewidth external-cavity laser (ECL) tunable over 100 nm around 1080 nm, using a single-angled-facet gain chip. We propose the ECL as a low-cost, high-performance alternative to fibre and diode lasers in this wavelength range and demonstrate its capability through the spectroscopy of metastable helium. Within the coarse tuning range, the wavelength can be continuously tuned over 30 pm (7.8 GHz) without mode-hopping and modulated with bandwidths up to 3 kHz (piezo) and 37(3) kHz (current). The spectral linewidth of the free-running ECL was measured to be 22(2) kHz (Gaussian) and 4.2(3) kHz (Lorentzian) over 22.5 ms, while a long-term frequency stability better than 40(20) kHz over 11 hours was observed when locked to an atomic reference.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement

Shayne Bennetts, Gordon D. McDonald, Kyle S. Hardman, John E. Debs, Carlos C. N. Kuhn, John D. Close, and Nicholas P Robins
Opt. Express 22(9) 10642-10654 (2014)

Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection

Di Zhang, Jianyi Zhao, Qi Yang, Wen Liu, Yanfeng Fu, Chao Li, Ming Luo, Shenglei Hu, Qianggao Hu, and Lei Wang
Opt. Express 20(18) 19670-19682 (2012)

High-power tunable narrow-linewidth Ti:sapphire laser at repetition rate of 1 kHz

Rui Wang, Nan Wang, Hao Teng, and Zhiyi Wei
Appl. Opt. 51(22) 5527-5530 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
    [Crossref] [PubMed]
  2. C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
    [Crossref]
  3. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [Crossref]
  4. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
    [Crossref]
  5. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
    [Crossref]
  6. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [Crossref]
  7. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
    [Crossref]
  8. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961–6966 (2009).
    [Crossref] [PubMed]
  9. E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
    [Crossref] [PubMed]
  10. D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
    [Crossref] [PubMed]
  11. S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55µ m and methods for linewidth measurement,” Opt. Express 22, 10642–10654 (2014).
    [Crossref] [PubMed]
  12. B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
    [Crossref] [PubMed]
  13. T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
    [Crossref]
  14. R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
    [Crossref] [PubMed]
  15. S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
    [Crossref] [PubMed]
  16. A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
    [Crossref] [PubMed]
  17. W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
    [Crossref]
  18. F. J. Duarte, Tunable Lasers Handbook (Elsevier Science, 1996).
  19. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers - a review,” Opto-Electron. Rev. 16, 347 (2008).
    [Crossref]
  20. W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
    [Crossref]
  21. P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
    [Crossref]
  22. F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.
  23. List of parts and instruments. We used an Innolume GM-1060-150-PM-250 gain module, a Thorlabs C240TME-1064 mounted aspheric lens, a Thorlabs GR13-1210 blazed diffraction grating, a Thorlabs KMSS/M kinematic mirror mount, a Thorlabs PA4FKW piezo chip, European Thermodynamics APH-127-10-25-S TEC modules, an Epcos S861 thermistor, and an AFW Technologies PISO-83-2-C-7-2-FB polarization maintaining in-fibre isolator in the construction of the laser. The laser was controlled using a custom-built current controller, ILX Lightwave LDT-5100 temperature controllers, and a PiezoDrive PDu-150CL piezo driver. The laser was frequency stabilised using a Brimrose TEM-250-50-10-2FP fibre-coupled AOM, an SRS SR510 lock-in amplifier, and a custom-built PI controller. For characterising the laser we used a New Focus 1544 12GHz photodetector, a Rigol DSA815-TG spectrum analyser, and a Burleigh WA-1100 wavemeter. We note to the readers that any specified parts and manufacturers named in this article are solely for the purpose of clarity in description of the experimental apparatus.
  24. S. D. Saliba, M. Junker, L. D. Turner, and R. E. Scholten, “Mode stability of external cavity diode lasers,” Appl. Opt. 48, 6692 (2009).
    [Crossref] [PubMed]
  25. P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757 (1985).
    [Crossref] [PubMed]
  26. L. Nilse, H. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548 (1999).
    [Crossref]
  27. J. S. Torrance, B. M. Sparkes, L. D. Turner, and R. E. Scholten, “Sub-kilohertz laser linewidth narrowing using polarization spectroscopy,” Opt. Express 24, 11396 (2016).
    [Crossref] [PubMed]
  28. Z. Zhang, X. Wang, and Q. Lin, “A novel way for wavelength locking with acousto-optic frequency modulation,” Opt. Express 17, 10372 (2009).
    [Crossref] [PubMed]
  29. H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
    [Crossref]
  30. K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133 (1993).
    [Crossref]
  31. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
    [Crossref]
  32. L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
    [Crossref]
  33. P. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE Journal of Quantum Electronics 20, 343–349 (1984).
    [Crossref]
  34. L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
    [Crossref]
  35. K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
    [Crossref]

2016 (1)

2015 (1)

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (3)

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[Crossref] [PubMed]

2011 (1)

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

2010 (1)

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

2009 (4)

2008 (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers - a review,” Opto-Electron. Rev. 16, 347 (2008).
[Crossref]

2005 (1)

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[Crossref]

2003 (1)

K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
[Crossref]

2002 (1)

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

2001 (2)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[Crossref]

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

1997 (2)

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

1995 (2)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

1993 (1)

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133 (1993).
[Crossref]

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
[Crossref]

1991 (2)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

1990 (1)

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

1985 (1)

1984 (1)

P. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE Journal of Quantum Electronics 20, 343–349 (1984).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
[Crossref]

Adams, C. S.

Akhavan, F.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Aspect, A.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Baldwin, K.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Baldwin, K. G. H.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Bennetts, S.

Birkl, G.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Boiron, D.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Borbely, J. S.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Browaeys, A.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Brown-Heft, T. L.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

Buckman, S. J.

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Byron, L. J.

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Cancio, P.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Cho, S. H.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

Close, J. D.

Cohen-Tannoudji, C.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Cook, E. C.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Dagenais, M.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Dall, R. G.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Davies, H. J.

Debarge, G.

P. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE Journal of Quantum Electronics 20, 343–349 (1984).
[Crossref]

Debs, J. E.

Duarte, F. J.

F. J. Duarte, Tunable Lasers Handbook (Elsevier Science, 1996).

Eikema, K. S. E.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Enderlein, M.

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Fan, Z. F.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

Farkas, D.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[Crossref]

Fukuda, K.

K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
[Crossref]

Gabrielse, G.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[Crossref]

Gallion, P.

P. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE Journal of Quantum Electronics 20, 343–349 (1984).
[Crossref]

Garman, J. C.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

Hall, J. L.

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133 (1993).
[Crossref]

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Hardman, K. S.

Hawthorn, C.

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[Crossref]

Heim, P. J. S.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Henson, B. M.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

Hodgman, S. S.

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Holmstrom, R.

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

Hoogerland, M. D.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Hu, Y.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Huber, T.

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

Ikonen, E.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

Johnson, F. G.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

Junker, M.

Kershaw, E.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Khakimov, R. I.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
[Crossref]

Kinoshita, M.

K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
[Crossref]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Krainak, M.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Kuhn, C. C. N.

Lacourse, J.

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

Leavitt, R.

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Leduc, M.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Libbrecht, K. G.

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133 (1993).
[Crossref]

Lin, Q.

Ludvigsen, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
[Crossref]

Martin, P. J.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

McDonald, G. D.

McNicholl, P.

Meland, E.

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

Mercer, L.

L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

Metcalf, H. J.

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers - a review,” Opto-Electron. Rev. 16, 347 (2008).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
[Crossref]

Nam, Keeyol

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

Nilse, L.

Nowak, S.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
[Crossref]

Pietiläinen, A.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

Poupard, J.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Powazinik, W.

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Rideout, W.

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

Robert, A.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Robins, N. P.

Rozendaal, R. A.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Saini, S.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Saliba, S. D.

Schätz, T.

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

Schneider, C.

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

Scholten, R.

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

Scholten, R. E.

Simonet, J.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Sirjean, O.

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Sparkes, B. M.

Steck, D. A.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
[Crossref]

Tachikawa, M.

K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
[Crossref]

Talvitie, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

Tang, L.-Y.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

Thompson, D. J.

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[Crossref] [PubMed]

Torrance, J. S.

Trippenbach, M.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Truscott, A.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Truscott, A. G.

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Turner, L.

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

Turner, L. D.

van Rooij, R.

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Vassen, W.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Wang, X.

Weber, K.

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[Crossref]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Westbrook, C. I.

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
[Crossref]

Wieman, C. E.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

Wilson, S.

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

Zelevinsky, T.

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[Crossref]

Zhang, Z.

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Am. J. Phys (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys 60, 1098–1111 (1992).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

K. Fukuda, M. Tachikawa, and M. Kinoshita, “Allan-variance measurements of diode laser frequency-stabilized with a thin vapor cell,” Appl. Phys. B 77, 823–827 (2003).
[Crossref]

Electron. Lett. (3)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630 (1980).
[Crossref]

W. Rideout, R. Holmstrom, J. Lacourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26, 36–38 (1990).
[Crossref]

P. J. S. Heim, Z. F. Fan, S. H. Cho, Keeyol Nam, M. Dagenais, F. G. Johnson, and R. Leavitt, “Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity,” Electron. Lett. 33, 1387 (1997).
[Crossref]

IEEE Journal of Quantum Electronics (1)

P. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE Journal of Quantum Electronics 20, 343–349 (1984).
[Crossref]

J. Lightwave Technol. (1)

L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

Nat. Photonics (1)

C. Schneider, M. Enderlein, T. Huber, and T. Schätz, “Optical trapping of an ion,” Nat. Photonics 4, 772–775 (2010).
[Crossref]

Opt. Commun. (2)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

L. Turner, K. Weber, C. Hawthorn, and R. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[Crossref]

Opt. Express (3)

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers - a review,” Opto-Electron. Rev. 16, 347 (2008).
[Crossref]

Phys. Rev. Lett. (3)

B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, “Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes,” Phys. Rev. Lett. 115, 043004 (2015).
[Crossref] [PubMed]

T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[Crossref]

S. S. Hodgman, R. G. Dall, L. J. Byron, K. G. H. Baldwin, S. J. Buckman, and A. G. Truscott, “Metastable helium: A new determination of the longest atomic excited-state lifetime,” Phys. Rev. Lett. 103, 053002 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, “Cold and trapped metastable noble gases,” Rev. Mod. Phys. 84, 175–210 (2012).
[Crossref]

Rev. Sci. Instrum. (7)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[Crossref]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[Crossref]

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[Crossref] [PubMed]

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[Crossref] [PubMed]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997).
[Crossref]

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133 (1993).
[Crossref]

Science (3)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1 → 21S0 transition,” Science 333, 196–198 (2011).
[Crossref] [PubMed]

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, “A Bose-Einstein condensate of metastable atoms,” Science 292, 461–464 (2001).
[Crossref] [PubMed]

Other (3)

F. J. Duarte, Tunable Lasers Handbook (Elsevier Science, 1996).

F. Akhavan, S. Saini, Y. Hu, E. Kershaw, S. Wilson, M. Krainak, R. Leavitt, P. J. S. Heim, and M. Dagenais, “High power external cavity semiconductor laser with wavelength tuning over C, L, and S-bands using single-angled-facet gain chip,” in “ Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO 02. Technical Digest,” (Institute of Electrical and Electronics Engineers (IEEE), 2002), pp. 761–763.

List of parts and instruments. We used an Innolume GM-1060-150-PM-250 gain module, a Thorlabs C240TME-1064 mounted aspheric lens, a Thorlabs GR13-1210 blazed diffraction grating, a Thorlabs KMSS/M kinematic mirror mount, a Thorlabs PA4FKW piezo chip, European Thermodynamics APH-127-10-25-S TEC modules, an Epcos S861 thermistor, and an AFW Technologies PISO-83-2-C-7-2-FB polarization maintaining in-fibre isolator in the construction of the laser. The laser was controlled using a custom-built current controller, ILX Lightwave LDT-5100 temperature controllers, and a PiezoDrive PDu-150CL piezo driver. The laser was frequency stabilised using a Brimrose TEM-250-50-10-2FP fibre-coupled AOM, an SRS SR510 lock-in amplifier, and a custom-built PI controller. For characterising the laser we used a New Focus 1544 12GHz photodetector, a Rigol DSA815-TG spectrum analyser, and a Burleigh WA-1100 wavemeter. We note to the readers that any specified parts and manufacturers named in this article are solely for the purpose of clarity in description of the experimental apparatus.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mechanical design of the external-cavity laser. (a) The schematic shows the mechanical design of the Littrow configured ECL with a fibre-coupled gain chip. Components not shown in the schematics include the cavity temperature monitoring thermistor, cavity TEC (under the external-cavity block), and the integrated TEC inside the gain chip module. See [23] for a list of components used in the design. (b) An isolated section view of the laser head consisting of the fibre-coupled gain chip and collimation optics. The arrows indicate the degrees-of-freedom in the lens alignment provided by the custom lens mount.

Fig. 2
Fig. 2

L-I curve showing the power measured at the fibre-coupled output, versus injection current, at 1083.33(1) nm. The threshold current and slope efficiency were measured to be 50(1) mA and 0.57(1) mW/mA, respectively.

Fig. 3
Fig. 3

Wavelength tunability. (a) Saturated absorption spectroscopy of metastable helium obtained from a continuous mode-hop free scan of the laser wavelength over 4.6 GHz (15 pm). The 23S1 − 23P1,2 transitions and the corresponding crossover are indicated in the figure. (b) The plot shows the laser output power (Iinj = 195 mA) over the coarse wavelength tuning range. The laser was single-mode at each data point after adjustments. The tuning ranges at FWHM (−3 dB) and FWTM (−10 dB) were determined to be 70(3) nm and 100(3) nm, respectively, with the centre wavelength at 1080(3) nm.

Fig. 4
Fig. 4

Laser wavelength modulation response. (a) The frequency response of the laser frequency to modulations of PZT voltage. A flat response of 71(1) kHz/mV was observed below the resonance feature at 3.6 kHz, indicated by the leftmost grey band. The second band located at 40 kHz indicates the predicted mechanical resonance of the grating loaded PZT. The resonance at 140 kHz is most likely an electrical resonance. (b) A similar plot is shown for the modulation of injection current. A flat response of −67(3) kHz/µA (sign determined from DC adjustments) was observed below 100 Hz and a slow roll-off to the −6 dB point at 37(3) kHz was measured.

Fig. 5
Fig. 5

Heterodyne laser linewidth measurement. (a) Averaged beat note spectrum, taken at 10 ms sweep time, from a heterodyne detection of two identically constructed free-running lasers (FR⊗FR). The beat note is divided into the central 1 MHz region (blue) and remaining tails (red) and separately fitted by a Gaussian (solid curve) and a Lorentzian (dashed curve) profile, respectively. (b) A heterodyne beat note from a free-running and a locked laser (Locked⊗FR) taken over 10 ms sweep time. The sidebands at ~260 kHz were due to the switching noise of the PZT driver used in the locking scheme. (c) The behaviour of heterodyne beat note FWHM when the sweep time of the spectrum analyser is varied between 10 ms to 10 s for the FR⊗FR (unfilled) and Locked⊗FR (filled) cases. The Gaussian peak (circle) was observed to broaden in sweep time in contrast to the Lorentzian tail (triangle) which was almost constant even from three orders of magnitude increase in sweep time. Each data point is an average of fits to 50 individual traces.

Fig. 6
Fig. 6

Long-term laser frequency stability. (a) The frequency drift of the free-running (blue) and the locked (red) laser monitored over a day, sampled at ~1.5 Hz. (b) Allan deviation of the laser frequency. The Allan deviations calculated at an observation time of 11 hours for the free-running and locked laser were 30(20) MHz and 40(20) kHz, respectively.

Tables (1)

Tables Icon

Table 1 Laser frequency modulation sensitivity. The bandwidth is calculated at the −6 dB gain point. (*Limited by a mechanical resonance)

Metrics