Abstract

Particle tracking velocimetry (PTV) is a valuable tool for microfluidic analysis. Especially mixing processes and the environmental interaction of fluids on a microscopic scale are of particular importance for pharmaceutical and biomedical applications. However, currently applied techniques suffer from the lag of instantaneous depth information. Here we present a scan-free, shadow-imaging PTV-technique for 3D trajectory and velocity measurement of flow fields in micro-channels with 2 µm spatial resolution. By using an incoherent light source, one camera and a spatial light modulator (LCoS-SLM) that generates double-images of the seeding particle shadows, it is a simply applicable and highly scalable technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High fidelity digital inline holographic method for 3D flow measurements

Mostafa Toloui and Jiarong Hong
Opt. Express 23(21) 27159-27173 (2015)

Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star

Nektarios Koukourakis, Bob Fregin, Jörg König, Lars Büttner, and Jürgen W. Czarske
Opt. Express 24(19) 22074-22087 (2016)

Single-camera, three-dimensional particle tracking velocimetry

Kevin Peterson, Boris Regaard, Stefan Heinemann, and Volker Sick
Opt. Express 20(8) 9031-9037 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
    [Crossref] [PubMed]
  2. I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
    [Crossref] [PubMed]
  3. T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
    [Crossref] [PubMed]
  4. B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400), 346–347 (1999).
    [Crossref]
  5. S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
    [Crossref] [PubMed]
  6. C. A. Werley and W. E. Moerner, “Single-molecule nanoprobes explore defects in spin-grown crystals,” J. Phys. Chem. B 110(38), 18939–18944 (2006).
    [Crossref] [PubMed]
  7. S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42(1), 557–576 (2010).
    [Crossref]
  8. A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
    [Crossref] [PubMed]
  9. A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
    [Crossref] [PubMed]
  10. C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
    [Crossref] [PubMed]
  11. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
    [Crossref]
  12. J. P. Brody and P. Yager, “Diffusion-based extraction in a microfabricated device,” Sens. Actuators A Phys. 58(1), 13–18 (1997).
    [Crossref]
  13. M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta 507(1), 63–71 (2004).
    [Crossref]
  14. C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Visualization 15(1), 1–31 (2012).
    [Crossref]
  15. A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
    [Crossref]
  16. W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
    [Crossref]
  17. S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
    [Crossref]
  18. K. Philipp, A. Smolarski, N. Koukourakis, A. Fischer, M. Stürmer, U. Wallrabe, and J. W. Czarske, “Volumetric HiLo microscopy employing an electrically tunable lens,” Opt. Express 24(13), 15029–15041 (2016).
    [Crossref] [PubMed]
  19. S. Grare, D. Allano, S. Coëtmellec, G. Perret, F. Corbin, M. Brunel, G. Gréhan, and D. Lebrun, “Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation,” Appl. Opt. 55(3), A49–A53 (2016).
    [Crossref] [PubMed]
  20. S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17(11), 2897–2905 (2006).
    [Crossref]
  21. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  22. A. Fischer, C. Kupsch, J. Gürtler, and J. Czarske, “High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements,” Opt. Express 23(19), 24910–24922 (2015).
    [Crossref] [PubMed]
  23. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
    [Crossref] [PubMed]
  24. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
    [Crossref] [PubMed]
  25. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010).
    [Crossref] [PubMed]
  26. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
    [Crossref] [PubMed]
  27. Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
    [Crossref] [PubMed]
  28. M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” Proc. SPIE 9441, 94410N (2014).
    [Crossref]
  29. M. Baránek, P. Bouchal, M. Šiler, and Z. Bouchal, “Aberration resistant axial localization using a self-imaging of vortices,” Opt. Express 23(12), 15316–15331 (2015).
    [Crossref] [PubMed]
  30. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
    [Crossref] [PubMed]
  31. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
    [Crossref] [PubMed]
  32. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett. 39(18), 5337–5340 (2014).
    [Crossref] [PubMed]
  33. http://de.mathworks.com/matlabcentral/fileexchange/41235-ptvlab–particle-tracking-velocimetry-lab-
  34. Z. Cao and K. Wang, “Effects of astigmatism and coma on rotating point spread function,” Appl. Opt. 53(31), 7325–7330 (2014).
    [Crossref] [PubMed]
  35. C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation,” Opt. Express 22(4), 4029–4037 (2014).
    [Crossref] [PubMed]
  36. R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39(2), 275–278 (2014).
    [Crossref] [PubMed]
  37. N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
    [Crossref] [PubMed]

2016 (4)

2015 (3)

2014 (6)

2012 (3)

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Visualization 15(1), 1–31 (2012).
[Crossref]

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

2011 (4)

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
[Crossref]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
[Crossref] [PubMed]

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
[Crossref] [PubMed]

2010 (3)

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42(1), 557–576 (2010).
[Crossref]

G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010).
[Crossref] [PubMed]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

2006 (3)

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17(11), 2897–2905 (2006).
[Crossref]

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

C. A. Werley and W. E. Moerner, “Single-molecule nanoprobes explore defects in spin-grown crystals,” J. Phys. Chem. B 110(38), 18939–18944 (2006).
[Crossref] [PubMed]

2004 (1)

M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta 507(1), 63–71 (2004).
[Crossref]

2001 (2)

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[Crossref] [PubMed]

C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
[Crossref] [PubMed]

1999 (2)

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400), 346–347 (1999).
[Crossref]

1997 (1)

J. P. Brody and P. Yager, “Diffusion-based extraction in a microfabricated device,” Sens. Actuators A Phys. 58(1), 13–18 (1997).
[Crossref]

1996 (1)

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Allano, D.

Backer, A. S.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Badieirostami, M.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

Baránek, M.

M. Baránek, P. Bouchal, M. Šiler, and Z. Bouchal, “Aberration resistant axial localization using a self-imaging of vortices,” Opt. Express 23(12), 15316–15331 (2015).
[Crossref] [PubMed]

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” Proc. SPIE 9441, 94410N (2014).
[Crossref]

Baumgartner, W.

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Bernet, S.

Bornhäuser, M.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Bouchal, P.

Bouchal, Z.

M. Baránek, P. Bouchal, M. Šiler, and Z. Bouchal, “Aberration resistant axial localization using a self-imaging of vortices,” Opt. Express 23(12), 15316–15331 (2015).
[Crossref] [PubMed]

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” Proc. SPIE 9441, 94410N (2014).
[Crossref]

Brevis, W.

W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
[Crossref]

Brody, J. P.

J. P. Brody and P. Yager, “Diffusion-based extraction in a microfabricated device,” Sens. Actuators A Phys. 58(1), 13–18 (1997).
[Crossref]

Brunel, M.

Büttner, L.

Cabrera, C. R.

C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
[Crossref] [PubMed]

Cao, Z.

Charest, J. L.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Cierpka, C.

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Visualization 15(1), 1–31 (2012).
[Crossref]

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Coëtmellec, S.

Condeelis, J. S.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Conkey, D. B.

Corbin, F.

Czarske, J.

Czarske, J. W.

Fiedler, C.

Finlayson, B.

C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
[Crossref] [PubMed]

Finlayson, B. A.

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

Fischer, A.

Frakes, D. H.

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Fregin, B.

Gertler, F. B.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Gitai, Z.

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

Grare, S.

Gréhan, G.

Grover, G.

Gruber, H. J.

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Guck, J.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Gürtler, J.

Herbig, M.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Huang, B.

Hughes-Alford, S. K.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Jesacher, A.

Jirka, G. H.

W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
[Crossref]

Kaehler, C.

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Kähler, C. J.

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Visualization 15(1), 1–31 (2012).
[Crossref]

Kamholz, A. E.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[Crossref] [PubMed]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

Kamm, R. D.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Kim, K. C.

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17(11), 2897–2905 (2006).
[Crossref]

Kim, S. Y.

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

Kinkhabwala, A.

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

Klein, S. A.

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

König, J.

Koukourakis, N.

Kräter, M.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Kupsch, C.

Lebrun, D.

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Lew, M. D.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

Lindken, R.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

McGorty, R.

Meinhart, C. D.

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42(1), 557–576 (2010).
[Crossref]

Moerner, W. E.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

C. A. Werley and W. E. Moerner, “Single-molecule nanoprobes explore defects in spin-grown crystals,” J. Phys. Chem. B 110(38), 18939–18944 (2006).
[Crossref] [PubMed]

Moran, J. L.

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Morgan, H.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Munson, M. S.

M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta 507(1), 63–71 (2004).
[Crossref]

Niño, Y.

W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
[Crossref]

Oreffo, R. O. C.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Otto, O.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Pavani, S. R. P.

Perret, G.

Philipp, K.

Piestun, R.

Posner, J. D.

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

Quirin, S.

Ritsch-Marte, M.

Roider, C.

Rosendahl, P.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Sahl, S. J.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Schilling, E. A.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[Crossref] [PubMed]

Schindler, H.

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Schmidt, T.

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Schnitzbauer, J.

Schütz, G. J.

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Shapiro, L.

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

Shechtman, Y.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Šiler, M.

Smalyukh, I. I.

Smolarski, A.

Spencer, D.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Stürmer, M.

Thompson, M. A.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

Trivedi, R. P.

Vennemann, P.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Wallrabe, U.

Wang, K.

Weigl, B. H.

B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400), 346–347 (1999).
[Crossref]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

Weiss, L. E.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Wereley, S.

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Wereley, S. T.

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42(1), 557–576 (2010).
[Crossref]

Werley, C. A.

C. A. Werley and W. E. Moerner, “Single-molecule nanoprobes explore defects in spin-grown crystals,” J. Phys. Chem. B 110(38), 18939–18944 (2006).
[Crossref] [PubMed]

Westerweel, J.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Williams, S. J.

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Xavier, M.

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

Yager, P.

M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta 507(1), 63–71 (2004).
[Crossref]

C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
[Crossref] [PubMed]

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[Crossref] [PubMed]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400), 346–347 (1999).
[Crossref]

J. P. Brody and P. Yager, “Diffusion-based extraction in a microfabricated device,” Sens. Actuators A Phys. 58(1), 13–18 (1997).
[Crossref]

Yoon, S. Y.

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17(11), 2897–2905 (2006).
[Crossref]

Zervantonakis, I. K.

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

Zhang, W.

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Anal. Chem. (2)

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Anal. Chem. 71, 5340–5347 (1999).
[Crossref] [PubMed]

C. R. Cabrera, B. Finlayson, and P. Yager, “Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation,” Anal. Chem. 73(3), 658–666 (2001).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta 507(1), 63–71 (2004).
[Crossref]

Annu. Rev. Fluid Mech. (1)

S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42(1), 557–576 (2010).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Biophys. J. (1)

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[Crossref] [PubMed]

Exp. Fluids (2)

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

W. Brevis, Y. Niño, and G. H. Jirka, “Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry,” Exp. Fluids 50(1), 135–147 (2011).
[Crossref]

Integr. Biol. (1)

M. Xavier, P. Rosendahl, M. Herbig, M. Kräter, D. Spencer, M. Bornhäuser, R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry,” Integr. Biol. 8(5), 616–623 (2016).
[Crossref] [PubMed]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

C. A. Werley and W. E. Moerner, “Single-molecule nanoprobes explore defects in spin-grown crystals,” J. Phys. Chem. B 110(38), 18939–18944 (2006).
[Crossref] [PubMed]

J. Visualization (1)

C. Cierpka and C. J. Kähler, “Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics,” J. Visualization 15(1), 1–31 (2012).
[Crossref]

Meas. Sci. Technol. (2)

S. A. Klein, J. L. Moran, D. H. Frakes, and J. D. Posner, “Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning,” Meas. Sci. Technol. 23(8), 085304 (2012).
[Crossref]

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17(11), 2897–2905 (2006).
[Crossref]

Microfluid. Nanofluidics (1)

A. Kumar, C. Cierpka, S. J. Williams, C. Kaehler, and S. Wereley, “3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera,” Microfluid. Nanofluidics 10(2), 355–365 (2011).
[Crossref]

Nano Lett. (2)

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref] [PubMed]

Opt. Express (7)

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[Crossref] [PubMed]

C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation,” Opt. Express 22(4), 4029–4037 (2014).
[Crossref] [PubMed]

K. Philipp, A. Smolarski, N. Koukourakis, A. Fischer, M. Stürmer, U. Wallrabe, and J. W. Czarske, “Volumetric HiLo microscopy employing an electrically tunable lens,” Opt. Express 24(13), 15029–15041 (2016).
[Crossref] [PubMed]

N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref] [PubMed]

M. Baránek, P. Bouchal, M. Šiler, and Z. Bouchal, “Aberration resistant axial localization using a self-imaging of vortices,” Opt. Express 23(12), 15316–15331 (2015).
[Crossref] [PubMed]

A. Fischer, C. Kupsch, J. Gürtler, and J. Czarske, “High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements,” Opt. Express 23(19), 24910–24922 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, and W. E. Moerner, “Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10929–10934 (2006).
[Crossref] [PubMed]

I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci. U.S.A. 109(34), 13515–13520 (2012).
[Crossref] [PubMed]

T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” Proc. SPIE 9441, 94410N (2014).
[Crossref]

Science (1)

B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400), 346–347 (1999).
[Crossref]

Sens. Actuators A Phys. (1)

J. P. Brody and P. Yager, “Diffusion-based extraction in a microfabricated device,” Sens. Actuators A Phys. 58(1), 13–18 (1997).
[Crossref]

Other (1)

http://de.mathworks.com/matlabcentral/fileexchange/41235-ptvlab–particle-tracking-velocimetry-lab-

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (4243 KB)      Free particle motion
» Visualization 2: AVI (3171 KB)      Laminar flow

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical setup for shadow imaging of the seeding particles. For setup alignment a laser beam (532 nm) transmitted through a single-mode fiber (SMF) was used. For fluid flow measurements light of a green LED (532 nm) was focused to the micro-channel (MC). A microscope objective (MO) (10x, NA = 0.3, 40x, NA = 0.65) images the shadows of the particles followed by a telescope consisting of lenses (L) f1 = 5 cm, f2 = 5 cm, a mirror (M) and a second telescope built of f3 = 3 cm, f4 = 10cm, an iris (I), and a polarizer (P). The LCoS Holoeye Pluto (SLM) is loaded with a spiral phase mask (SPM) and the image is focused to a Basler pilot camera (CCD) with a lens f5 = 6 cm.
Fig. 2
Fig. 2 Calibration measurement for optimizing the setup. The image of a laser spot from a single mode fiber (532 nm) is converted to a double-image by a applying a SPM of ∆�� = 2 and N = 10. With the help of the bright single spot emission the alignment and quality of the setup can be assured. Error bars for angle determination is given as vertical stripes. Up to ± 38° there is a rest of unmodulated laser light in the center of the double-image. The error bars indicate an angle estimation error of ± 2.5° which results in an error for depth localization of ± 6 µm.
Fig. 3
Fig. 3 a) Static micro-particles (2 µm in diameter) in a micro-channel for increasing N. With increasing N, the rotation sensitivity d ψ / d z changes and the double-image separation increases while the overall contrast is reduced (see rainbow color coded images below the original ones). b) Inverted image for one particle applying spiral phase mask of N = 2. Two Gaussian intensity distributions are recognized and attributed to one particle c) The total angle rotation for N = 2 is 65° which leads to detectable z-range of 85 µm. The slope of the calibration curve is (0.8 ± 0.017) °/µm.
Fig. 4
Fig. 4 a) Free motion of 2 µm sized particles in water within a micro-channel (see Visualization 1). b) Four different particles are identified. Particles 1, 2, 3 and 4 are located in a depth of Z = 81 µm, 58 µm, 61 µm and 49 µm, respectively. c) A weak directed drift from the left to the right side in the XY-Plane is observed (red dots). The total measurement range along the optical axis Z is 55 µm.
Fig. 5
Fig. 5 a) Measurement data of a laminar flow seeded with 2 µm sized particles in a 400 µm thick micro-channel (see Visualization 2) b) Coordinate labeling with respect to the micro-channel. c) Particle trajectories have been identified with the DH-PSF shadow-imaging method. The seeding particles keep their z-position (green dots: XZ projection) while flowing from the right to the left side (red dots: XY projection). The spatial resolution is 2 µm in X, Y and Z-coordinate. The measurement volume had a size of 40x40x40 µm.
Fig. 6
Fig. 6 Parabolic flow profile measurements in a 400 µm thick micro-channel. Black data points have been captured by scanning PTV measurements i.e. one PTV evaluation per z-layer. The data has been fitted by a parabola within the error bars. Orange data points have been extracted from only one PTV evaluation of double-helix PSF measurements. The evaluable axial range for z-localization is here 55 µm (compare also calibration curve in Fig. 3).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d ψ d z = π ( N A ) 2 λ N Δ l
I ( x , y ) = exp { [ ( x x 0 ) ² / A ² + ( y y 0 ) ² / B ² p ] / [ 2 σ ² ] }

Metrics