Abstract

Optical near field enhancements in the vicinity of particles illuminated by laser light are increasingly recognized as a powerful tool for nanopatterning applications, but achieving sub-wavelength details from the near-field distribution remains a challenge. Here we present a quantitative analysis of the spatial modulation of the near optical fields generated using single 8 ps, 355 nm (and 532 nm) laser pulses around individual colloidal particles and small close packed arrays of such particles on silicon substrates. The analysis is presented for particles in air and, for the first time, when immersed in a range of liquid media. Immersion in a liquid allows detailed exploration of the effects on the near field of changing not just the magnitude but also the sign of the refractive index difference between the particle and the host medium. The level of agreement between the results of ray tracing and Mie scattering simulations, and the experimentally observed patterns on solid surfaces, should encourage further modelling, predictions and demonstrations of the rich palette of sub-wavelength surface profiles that can be achieved using colloidal particles immersed in liquids.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
    [Crossref]
  2. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
    [Crossref] [PubMed]
  3. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
    [Crossref] [PubMed]
  4. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  5. P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
    [Crossref] [PubMed]
  6. M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
    [Crossref] [PubMed]
  7. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).
  8. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  9. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 330(3), 377–445 (1908).
    [Crossref]
  10. https://optics.synopsys.com/rsoft/application-gallery/mie-scattering.html
  11. Z. B. Wang, W. Guo, A. Pena, D. J. Whitehead, B. S. Luk’yanchuk, L. Li, Z. Liu, Y. Zhou, and M. H. Hong, “Laser micro/nano fabrication in glass with tunable-focus particle lens array,” Opt. Express 16(24), 19706–19711 (2008).
    [Crossref] [PubMed]
  12. K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
    [Crossref]
  13. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [Crossref]
  14. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
    [Crossref]
  15. I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
    [Crossref] [PubMed]

2015 (1)

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

2014 (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

2013 (2)

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

2009 (1)

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

2008 (1)

2004 (2)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

2002 (1)

K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

2001 (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

1999 (1)

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

1965 (1)

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 330(3), 377–445 (1908).
[Crossref]

Afonso, C. N.

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Ashfold, M. N. R.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Backman, V.

Bauerle, D.

K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Boneberg, J.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Brousseau, E.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Chen, Z.

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Denk, R.

K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Egami, C.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Ezquerra, T. A.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

Garcia de Abajo, F. J.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

García de Abajo, F. J.

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Guo, W.

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Hong, M. H.

Jipa, F.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Kawata, Y.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Kühler, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Leiderer, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Li, L.

Liu, Z.

Luk’yanchuk, B. S.

Malitson, I. H.

Maraloiu, V. A.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Martín-Fabiani, I.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

Mazur, E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 330(3), 377–445 (1908).
[Crossref]

Mosbacher, M.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Nakamura, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Nogales, A.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

Okamoto, N.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Pena, A.

Petkov, P.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Puerto, D.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Riedel, S.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Siegel, J.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Solis, J.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Sugihara, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Taflove, A.

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Tsuchimori, M.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Ulmeanu, M.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Ursescu, D.

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Wang, Z. B.

Watanabe, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Whitehead, D. J.

Zhou, Y.

Zimmermann, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, and A. Nogales, “Nanostructuring thin polymer films with optical near fields,” ACS Appl. Mater. Interfaces 5(21), 11402–11408 (2013).
[Crossref] [PubMed]

Ann. Phys. Lpz. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 330(3), 377–445 (1908).
[Crossref]

Appl. Phys. B (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Appl. Phys. Lett. (2)

K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Beilstein J. Nanotechnol. (1)

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Nanotechnology (1)

M. Ulmeanu, P. Petkov, D. Ursescu, V. A. Maraloiu, F. Jipa, E. Brousseau, and M. N. R. Ashfold, “Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography,” Nanotechnology 26(45), 455303 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Opt. Express (2)

Small (1)

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).

https://optics.synopsys.com/rsoft/application-gallery/mie-scattering.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Diagram illustrating the interference between rays that are directly incident on a substrate and those that strike it after reflection from the surface of an R = 4 μm spherical particle with ncolloid = 1.47. The light propagates in the + Z direction and is linearly polarized along X. (b) Fresnel reflection coefficient for rays scattered to different points on the substrate in air (nair = 1.00, Δn = 0.47) and in liquids with different nliquid (and thus different Δn combinations), plotted as a function of distance d beyond the sphere radius.

Fig. 2
Fig. 2

False grey scale plots showing the |E2| distributions returned by FDTD simulations for a single sphere with radius R = 1.5 μm and ncolloid = 1.44 immersed in a liquid medium such that a) Δn > 0 and b)Δn < 0. The dashed white circle shows the position of the colloidal particle. The incident radiation (λ0 = 355 nm) is linearly polarized (along X) and propagates with wavevector k in the + Z-direction. The grey scale used is shown at the far left and indicates the intensity immediately behind the particle (i.e. at the position a substrate surface would occupy) relative to that of the incident wave (defined as 1.0). The panels to the right of each grey scale plot show cuts through calculated |E2| distributions along X, in the XY plane, at the point Z = R, for different combinations of R and Δn: (a1) R = 5 μm, Δn =+ 0.25; (a2)R = 5 μm, Δn =+ 0.1; (a3) R = 1.5 μm, Δn =+ 0.1; (b1) R = 5 μm, Δn = − 0.25; (b2)R = 5 μm, Δn = − 0.1; (b3) R = 1.5 μm, Δn = − 0.1.

Fig. 3
Fig. 3

SEM images illustrating patterns achieved on Si substrates by illuminating the translating sample surface with a train of equi-spaced laser pulses. The respective areas contained (a) one or (b) more than one colloidal particles with respective particle sizes and refractive indices as follows: a) R = 5 μm, ncolloid = 1.64 and b) R = 1.5 μm, ncolloid = 1.47 with, in both cases, nliquid = 1.00 (air). The centre of the substrate area eclipsed by the particle of interest prior to irradiation is determined by the hole created by NF-F (i.e. NF-LA) effects, the larger darkened areas are the surface regions subjected to greater than some threshold incident fluence, and the white discs near the top of (b) are a cluster of four particles that were not removed in the LILAC processing.

Fig. 4
Fig. 4

SEM images showing the NF-LA and NF-S patterns formed on a Si surface by single pulse λ0 = 355 nm laser irradiation of: a) one and b) two close packed colloidal particles with R = 5 μm, ncolloid = 1.64, in air (nliquid = 1.00). The red line shows the radius along which the cross-sectional profile shown in Fig. 7(a) was measured.

Fig. 5
Fig. 5

SEM images of patterns formed by LILAC processing of a Si substrate surface immersed in toluene (nliquid = 1.52) with a single 355 nm laser pulse. Each exposed area contained a close-packed cluster comprising (a) 2 and (b) 4 colloidal particles with R = 1.5 μm and ncolloid = 1.47, which were exposed to, respectively, F = 0.85 J cm−2 (left), 1.3 J cm−2(centre) and 2.2 J cm−2 (right).

Fig. 6
Fig. 6

Tilt view AFM images of the NF patterns imprinted on a Si substrate by LILAC lithographic processing using a single 355 nm laser pulse and close-packed arrays of three colloidal particles with R = 1.5 μm and ncolloid = 1.47 in toluene (nliquid = 1.52) and an incident fluence (a) F = 0.8 J cm−2 and (b) F = 2.2 J cm−2. The blue line in Fig. 6(b) shows the radius along which the cross-sectional profile shown in Fig. 7(b) was measured.

Fig. 7
Fig. 7

Cross-sectional AFM traces illustrating different topographical profiles that arise when the particle acts as (a) a converging lens (R = 5 μm, ncolloid = 1.64 in air (nliquid = 1), i.e. Δn > 0, along the red line in Fig. 4(a), and (b) a diverging lens (R = 1.5 μm, ncolloid = 1.47 in toluene (nliquid = 1.52), i.e. Δn < 0, along the blue line in Fig. 6(b). (c) Illustration of the decreasing separation df between the NF-S rings arising using different R and Δn combinations, plotted as a function of distance from the particle centre, i.e. (R + d). The period of the NF-S rings is smaller in liquid than in air, and tends to the predicted λ/nliquid value as the far field is approached.

Fig. 8
Fig. 8

Tilt view SEM images showing the Si surface patterns achieved by single shot LILAC processing with a single layer of colloidal particles (ncolloid = 1.47), immersed in carbon tetrachloride (nliquid = 1.48). The respective particle sizes and irradiation wavelengths were: (a) R = 1.5 μm, λ0 = 355 nm, (b) R = 350 nm, λ0 = 355 nm, and (c) R = 350 nm, λ0 = 532 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d f = λ sinθ
θ=2α
i total =arcsin( n colloid n liquid )

Metrics