Abstract

We present the first study of Q-switched Alexandrite lasers under continuous-wave diode-pumping with operation up to 10 kHz repetition rates in TEM00, with spatial quality M2 1.15. With a pulsed-diode dual-end-pumped design, pulse energy is scaled to a record level of 3 mJ. We also demonstrate, for the first time, cavity-dumped Q-switching of diode-pumped Alexandrite lasers under continuous-wave and pulsed diode-pumping, up to 10 kHz. Pulse energy of 510 μJ is demonstrated with 3 ns pulse duration and 170 kW peak power, in TEM00 with M2 < 1.2. Second harmonic generation of the cavity-dumped Q-switched pulses was used to generate UV wavelength 379 nm with conversion efficiency of 47%.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency >26 W diode end-pumped Alexandrite laser

Achaya Teppitaksak, Ara Minassian, Gabrielle M. Thomas, and Michael J. Damzen
Opt. Express 22(13) 16386-16392 (2014)

Diode-side-pumped Alexandrite slab lasers

M. J. Damzen, G. M. Thomas, and A. Minassian
Opt. Express 25(10) 11622-11636 (2017)

Diode-pumped femtosecond laser oscillator with cavity dumping

A. Killi, U. Morgner, M. J. Lederer, and D. Kopf
Opt. Lett. 29(11) 1288-1290 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  2. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of Alexandrite at elevated temperatures,” in Proc. Advanced Solid State Lasers (OSA, 1990), paper CL3.
  3. J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  4. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
    [Crossref]
  5. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
    [Crossref]
  6. M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped Alexandrite laser,” in Proc. Advanced Solid State Lasers (OSA, 2013), paper ATu3A.42.
  7. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave Alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  8. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
    [Crossref]
  9. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable Alexandrite laser,” Proc. CLEO, Paper CMAA5, (2005).
    [Crossref]
  10. E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
    [Crossref]
  11. M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped Alexandrite laser operation,” Proc. CLEO Europe (2013), paper CA-2.6.
  12. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  13. A. Munk, B. Jungbluth, M. Strotkamp, S. Gaussmann, D. Hoffmann, R. Poprawe, and J. Hoeffner, “Diode-pumped Alexandrite ring laser,” in Proc. Advanced Solid State Lasers (OSA, 2015), paper ATh2A.46.
  14. R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
    [Crossref]
  15. F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
    [Crossref]
  16. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in Proc. CLEO (2016), paper JTu5A.77.
    [Crossref]
  17. M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
    [Crossref]
  18. W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
    [Crossref]
  19. S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
    [Crossref]
  20. M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
    [Crossref]
  21. A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34(6), 1615–1622 (1963).
    [Crossref]
  22. L. McDonagh, R. Wallenstein, and R. Knappe, “47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator,” Opt. Lett. 31(22), 3303–3305 (2006).
    [Crossref] [PubMed]

2016 (1)

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

2015 (1)

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

2014 (2)

2013 (1)

2009 (2)

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

2006 (1)

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

1991 (1)

F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
[Crossref]

1990 (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

1989 (1)

R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
[Crossref]

1985 (1)

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

1981 (1)

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

1980 (1)

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

1963 (1)

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34(6), 1615–1622 (1963).
[Crossref]

Akbari, R.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in Proc. CLEO (2016), paper JTu5A.77.
[Crossref]

Arbabzadah, E. A.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Baali, I.

Beyatli, E.

Chard, S. P.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

Damzen, M. J.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref] [PubMed]

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped Alexandrite laser operation,” Proc. CLEO Europe (2013), paper CA-2.6.

de Rougemont, F.

R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
[Crossref]

Demirbas, U.

Erbert, G.

Frey, R.

R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
[Crossref]

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Ghanbari, S.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in Proc. CLEO (2016), paper JTu5A.77.
[Crossref]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Hamazaki, J.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Harter, D. J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

Hayashi, Y.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Heller, D. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

Jenssen, H.

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

Kerridge-Johns, W. R.

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

Knappe, R.

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Kurt, A.

Lee, C. H.

R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
[Crossref]

Leitenstorfer, A.

Lü, Q.

F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
[Crossref]

Major, A.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in Proc. CLEO (2016), paper JTu5A.77.
[Crossref]

McDonagh, L.

Minassian, A.

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref] [PubMed]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped Alexandrite laser operation,” Proc. CLEO Europe (2013), paper CA-2.6.

Morita, R.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Morris, R.

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

Morris, R. C.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

O’Dell, E. W.

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

Okida, M.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Omatsu, T.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Pete, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O. G.

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

Samelson, H.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Shand, M. L.

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

Shardlow, P. C.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

Sumpf, B.

Teppitaksak, A.

Thomas, G. M.

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref] [PubMed]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped Alexandrite laser operation,” Proc. CLEO Europe (2013), paper CA-2.6.

Völker, F.

F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
[Crossref]

Vuylsteke, A. A.

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34(6), 1615–1622 (1963).
[Crossref]

Wallenstein, R.

Walling, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

Walling, J. C.

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

Weber, H.

F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
[Crossref]

Yorulmaz, I.

Appl. Phys. B (2)

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[Crossref]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Appl. Phys. Lett. (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

IEEE J. Quant. Electron. (2)

J. Walling, O. G. Peterson, H. Jenssen, R. Morris, and E. W. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quant. Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable Alexandrite lasers: development and performance,” IEEE J. Quant. Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. Appl. Phys. (3)

F. Völker, Q. Lü, and H. Weber, “Passive mode‐locking of an Alexandrite laser for picosecond pulse generation,” J. Appl. Phys. 69(6), 3432–3439 (1991).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited‐state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34(6), 1615–1622 (1963).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

Opt. Commun. (2)

R. Frey, F. de Rougemont, and C. H. Lee, “An actively mode-locked continuous wave Alexandrite laser,” Opt. Commun. 73(3), 232–234 (1989).
[Crossref]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (6)

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable Alexandrite laser,” Proc. CLEO, Paper CMAA5, (2005).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped Alexandrite laser operation,” Proc. CLEO Europe (2013), paper CA-2.6.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped Alexandrite laser,” in Proc. Advanced Solid State Lasers (OSA, 2013), paper ATu3A.42.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of Alexandrite at elevated temperatures,” in Proc. Advanced Solid State Lasers (OSA, 1990), paper CL3.

A. Munk, B. Jungbluth, M. Strotkamp, S. Gaussmann, D. Hoffmann, R. Poprawe, and J. Hoeffner, “Diode-pumped Alexandrite ring laser,” in Proc. Advanced Solid State Lasers (OSA, 2015), paper ATh2A.46.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” in Proc. CLEO (2016), paper JTu5A.77.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of (a) Q-switched CW diode-pumped Alexandrite laser; (b) Q-switched dual-end-pumped Alexandrite laser with pulsed diode-pumping.
Fig. 2
Fig. 2 Variation of Q-switched pulse energy as function of CW diode pump power, at 5 kHz and 10 kHz repetition rate.
Fig. 3
Fig. 3 M2 caustic fit for Q-switched output at 5 kHz and 25 W pump power. Inset: screenshot of spatial profile at 5 kHz, 195 μJ pulse energy.
Fig. 4
Fig. 4 Comparison of single- and dual-end-pumped Alexandrite laser output energy under free-running conditions.
Fig. 5
Fig. 5 Variation of Q-switched output energy with pump energy, using polarisation-gain switching with no Brewster plate in cavity.
Fig. 6
Fig. 6 Q-switched pulse energy (black squares) and pulse duration (open red circles) for the dual-end-pumped Alexandrite laser.
Fig. 7
Fig. 7 Wavelength tuning of Q-switched dual-end-pumped Alexandrite doughnut-mode laser with intra-cavity BiFi tuning element.
Fig. 8
Fig. 8 Schematic of (a) cavity-dumped Q-switched CW diode-pumped Alexandrite laser; (b) cavity-dumping Q-switched dual-end-pumped Alexandrite laser with pulsed diode-pumping.
Fig. 9
Fig. 9 Variation of cavity-dumped Q-switched pulse energy with pulse repetition rate for CW diode-pumping.
Fig. 10
Fig. 10 Temporal profile of the cavity-dumped Q-switched output.
Fig. 11
Fig. 11 Pulse energy of cavity-dumped Q-switched Alexandrite laser as function of pump energy for different pump durations, at PRF 1 kHz. Inset: screenshot of spatial profile for 200 μs pump pulse.
Fig. 12
Fig. 12 Lasing spectrum of dual-end-pumped, cavity-dumped Q-switched Alexandrite laser (758 nm) and second harmonic (379 nm).
Fig. 13
Fig. 13 Pulse energy of fundamental (filled black squares) incident on, and second harmonic (open purple squares) generated by BBO nonlinear crystal, along with conversion efficiency (red circles).

Metrics