Abstract

A label-free and ultrasensitive microfiber interferometer biosensor has been demonstrated for detection of neurotransmitter molecule (5-HT). The surface morphology of the silicon dioxide nanospheres acting as molecule sieve provides an effective mean of gathering 5-HT molecules by designed mesoporous structure. The slight concentration change of 5-HT molecules is translated into a dramatic wavelength shift of the interferometric fringe pattern. The experimental results show that the biosensor has a linear response in concentration range from 100 fM to 1 µM and a detection limit as low as 84 fM.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity DNA biosensor based on microfiber Sagnac interferometer

Shuai Gao, Li-Peng Sun, Jie Li, Long Jin, Yang Ran, Yunyun Huang, and Bai-Ou Guan
Opt. Express 25(12) 13305-13313 (2017)

Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection.

Abraham Vázquez-Guardado, Alexandra Smith, Wade Wilson, Jeanette Ortega, J. Manuel Perez, and Debashis Chanda
Opt. Express 24(22) 25785-25796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Mössner and K. P. Lesch, “Role of serotonin in the Immune System and in Neuroimmune Interactions,” Brain Behav. Immun. 12(4), 249–271 (1998).
    [Crossref] [PubMed]
  2. M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
    [Crossref] [PubMed]
  3. Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
    [Crossref] [PubMed]
  4. N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
    [Crossref] [PubMed]
  5. P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
    [Crossref] [PubMed]
  6. C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
    [Crossref] [PubMed]
  7. N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
    [Crossref] [PubMed]
  8. N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
    [Crossref] [PubMed]
  9. C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).
  10. G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
    [Crossref]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  12. S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
    [PubMed]
  13. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  14. L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
    [Crossref] [PubMed]
  15. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  16. J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
    [Crossref] [PubMed]
  17. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref] [PubMed]
  18. Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
    [Crossref]
  19. L. Bo, C. C. O’Mahony, Y. Semenova, N. Gilmartin, P. Wang, and G. Farrell, “Microfiber coupler based label-free immunosensor,” Opt. Express 22(7), 8150–8155 (2014).
    [Crossref] [PubMed]
  20. T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
    [Crossref] [PubMed]
  21. M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
    [Crossref] [PubMed]
  22. Y. Huang, Z. Tian, L. P. Sun, D. Sun, J. Li, Y. Ran, and B. O. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
    [Crossref] [PubMed]
  23. L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
    [Crossref] [PubMed]
  24. J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
    [Crossref] [PubMed]
  25. M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
    [Crossref] [PubMed]
  26. Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
    [Crossref] [PubMed]
  27. Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
    [Crossref] [PubMed]

2016 (1)

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

2015 (3)

G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
[Crossref]

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Y. Huang, Z. Tian, L. P. Sun, D. Sun, J. Li, Y. Ran, and B. O. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
[Crossref] [PubMed]

2014 (7)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Bo, C. C. O’Mahony, Y. Semenova, N. Gilmartin, P. Wang, and G. Farrell, “Microfiber coupler based label-free immunosensor,” Opt. Express 22(7), 8150–8155 (2014).
[Crossref] [PubMed]

T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
[Crossref] [PubMed]

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

2013 (5)

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
[Crossref] [PubMed]

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

L. P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B. O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

2012 (3)

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref] [PubMed]

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

2011 (1)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

2008 (2)

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2005 (1)

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

2004 (1)

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
[Crossref] [PubMed]

1998 (1)

R. Mössner and K. P. Lesch, “Role of serotonin in the Immune System and in Neuroimmune Interactions,” Brain Behav. Immun. 12(4), 249–271 (1998).
[Crossref] [PubMed]

1989 (1)

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Abu Bakar, M. H.

Andrews, A. M.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Bakar, M. H. A.

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Bayle, C.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Benturquia, N.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Bo, L.

Brambilla, G.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Brouwer, H. J.

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

Brumbaugh, D. R.

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Cardenas-Sevilla, G. A.

Chen, C.

G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
[Crossref]

Chen, W.

M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
[Crossref] [PubMed]

Chenari, Z.

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

Chi, Y.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Couderc, F.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Denoroy, L.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Ding, M.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Dong, B.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

El-Kattan, A. F.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

El-Toni, A. M.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Erdelyi, E.

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Evans, C. J.

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Fan, J.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Farrell, G.

Feng, J.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Feng, Q.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Fountain, S.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Fu, Q.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Gao, S.

Geng, W.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Gilmartin, N.

Gu, C.

G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
[Crossref]

Guan, B. O.

Han, Q.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Hershey, N. D.

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

Hong, J.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Huang, Y.

Ji, C.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Ji, J.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

Jin, L.

Kamil, Y. M.

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
[Crossref] [PubMed]

Kennedy, R. T.

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

Korte-Bouws, G. A. H.

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

Kou, J. L.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Kozak, R.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Latifi, H.

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

Lepsy, C.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Lesch, K. P.

R. Mössner and K. P. Lesch, “Role of serotonin in the Immune System and in Neuroimmune Interactions,” Brain Behav. Immun. 12(4), 249–271 (1998).
[Crossref] [PubMed]

Li, J.

Li, N.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Li, W.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Li, X.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Liu, M.

M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
[Crossref] [PubMed]

Liu, R.

M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
[Crossref] [PubMed]

Liu, X.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lu, Y. Q.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Mabrouk, O. S.

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

Mahdi, M. A.

Maidment, N. T.

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Martin, B.

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
[Crossref] [PubMed]

Martinez-Rios, A.

Mattson, M. P.

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
[Crossref] [PubMed]

Maudsley, S.

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
[Crossref] [PubMed]

Monzon-Hernandez, D.

Mössner, R.

R. Mössner and K. P. Lesch, “Role of serotonin in the Immune System and in Neuroimmune Interactions,” Brain Behav. Immun. 12(4), 249–271 (1998).
[Crossref] [PubMed]

Mustapa, M. A.

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Narayanaswamy, R.

O’Mahony, C. C.

Orset, C.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Parrot, S.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Ran, G.

G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
[Crossref]

Ran, Y.

Reinhoud, N. J.

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

Ren, X. D.

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Renaud, B.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Rudolph, V. D.

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Saeedian, Z.

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

Salceda-Delgado, G.

Sang, S.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

Sauvinet, V.

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

Semenova, Y.

Shen, D.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Shi, C.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Song, P.

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

Sun, D.

Sun, L. P.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tan, Y.

Tang, Y.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Tian, Z.

Tong, L.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

van Heerwaarden, L. M.

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

Villatoro, J.

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Wang, P.

L. Bo, C. C. O’Mahony, Y. Semenova, N. Gilmartin, P. Wang, and G. Farrell, “Microfiber coupler based label-free immunosensor,” Opt. Express 22(7), 8150–8155 (2014).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Wang, X.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Wang, Y.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Weber, S. G.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Wei, Y.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Xiang, J.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Xiao, Y.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Xu, F.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Xu, X.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Xue, C.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Yaacob, M. H.

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Yadav, T. K.

Yan, W.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Yang, J.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Yu, H.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Yuan, Q.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Zhang, F.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Zhang, J.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Zhang, W.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

Zhang, W. X.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Zhang, X.

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Zhao, D.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Zhao, M. K.

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Zhao, Y.

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

Zhou, L.

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Zhu, C.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, W.

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Zibaii, M. I.

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

ACS Chem. Neurosci. (1)

N. J. Reinhoud, H. J. Brouwer, L. M. van Heerwaarden, and G. A. H. Korte-Bouws, “Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection,” ACS Chem. Neurosci. 4(5), 888–894 (2013).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

J. Yang, D. Shen, L. Zhou, W. Li, J. Fan, A. M. El-Toni, W. X. Zhang, F. Zhang, and D. Zhao, “Mesoporous silica-coated plasmonic nanostructures for surface-enhanced raman scattering detection and photothermal therapy,” Adv. Healthc. Mater. 3(10), 1620–1628 (2014).
[Crossref] [PubMed]

Anal. Chem. (3)

P. Song, O. S. Mabrouk, N. D. Hershey, and R. T. Kennedy, “In vivo neurochemical monitoring using benzoyl chloride dericatization and liquid chromatography-mass spectrometry,” Anal. Chem. 84(1), 412–419 (2012).
[Crossref] [PubMed]

C. Ji, W. Li, X. D. Ren, A. F. El-Kattan, R. Kozak, S. Fountain, and C. Lepsy, “Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates,” Anal. Chem. 80(23), 9195–9203 (2008).
[Crossref] [PubMed]

Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, “Capillary ultrahigh performance liquid chromatography with elevated temperature for sub-one minute separations of basal serotonin in submicroliter brain microdialysate samples,” Anal. Chem. 82(23), 9611–9616 (2010).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

M. Liu, R. Liu, and W. Chen, “Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,” Biosens. Bioelectron. 45, 206–212 (2013).
[Crossref] [PubMed]

Q. Fu, Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu, “A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium,” Biosens. Bioelectron. 49, 399–402 (2013).
[Crossref] [PubMed]

Brain Behav. Immun. (1)

R. Mössner and K. P. Lesch, “Role of serotonin in the Immune System and in Neuroimmune Interactions,” Brain Behav. Immun. 12(4), 249–271 (1998).
[Crossref] [PubMed]

Crit. Rev. Biotechnol. (1)

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, and W. Zhang, “Progress of new label-free techniques for biosensors: a review,” Crit. Rev. Biotechnol. 36(3), 465–481 (2016).
[PubMed]

Electrophoresis (1)

N. Benturquia, F. Couderc, V. Sauvinet, C. Orset, S. Parrot, C. Bayle, B. Renaud, and L. Denoroy, “Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection,” Electrophoresis 26(6), 1071–1079 (2005).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Y. M. Kamil, M. H. A. Bakar, M. A. Mustapa, and M. H. Yaacob, “Sensitive and specific protein sensing using single-mode tapered fiber immobilized with biorecognition molecules,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

J. Hazard. Mater. (1)

Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, and B. Dong, “Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions,” J. Hazard. Mater. 254-255, 157–165 (2013).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

M. I. Zibaii, H. Latifi, Z. Saeedian, and Z. Chenari, “Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against escherichia coli,” J. Photochem. Photobiol. B 135, 55–64 (2014).
[Crossref] [PubMed]

Lab Chip (1)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Microchim. Acta (1)

G. Ran, C. Chen, and C. Gu, “Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly (p-aminobenzenesulfonate),” Microchim. Acta 182(7–8), 1323–1328 (2015).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Neuroscience (1)

N. T. Maidment, D. R. Brumbaugh, V. D. Rudolph, E. Erdelyi, and C. J. Evans, “Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo,” Neuroscience 33(3), 549–557 (1989).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Sensor. Actuat. B. Chem. (1)

C. Xue, X. Wang, W. Zhu, Q. Han, C. Zhu, and J. Hong, “Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles,” Sensor. Actuat. B. Chem. 196, 57–63 (2014).

Sensors (Basel) (2)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(12), 8861–8876 (2012).
[Crossref] [PubMed]

Trends Neurosci. (1)

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci. 27(10), 589–594 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: the proposed fiber-optic interferometric biosensor for low levels of 5-HT molecules detection. BBS: broadband light source; OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

A schematic process flow of the synthesis of Ag@SiO2@mSiO2 nanocarrier: (a) Monodispersed silver nanoparticles. (b) Depositing thin SiO2 layer (~10 nm in thickness) on the surface of Ag nanoparticles using TEOS as silicon source. (c) Coating mesoporous SiO2 layer (~35 nm in thickness) on the basis of Ag@SiO2 nanospheres by introducing CTAB as template and followed by CTAB removal. A schematic diagram of the fabrication procedure for modified microfiber sensor with mesoporous nanostructures: (d) As-prepared microfiber device by tapering technique. (e) Cleaning microfiber with ethanol and piranha solution. (f) Amino groups with positive charges bonding to abundant hydroxyl groups on the surface of fresh microfiber with APTES. (g) Implementing the functionalized fiber device under the circumstances of nanospheres with negative charges. Top-view SEM image of dispersed Ag@SiO2 nanospheres and Ag@SiO2@mSiO2 with higher amplification factor are shown in panels (h) and (i), respectively. (j) Side-view SEM image of such Ag@SiO2@mSiO2 nanospheres functionalized fiber sensing device cross section.

Fig. 3
Fig. 3

(a) Measured transmission spectra with 5-HT concentrations of 0 to 1 µM for a silicon dioxide nanospheres coated microfiber interferometer. (b) Above: a correlation curve of the data which corresponding relative wavelength shift of as-prepared biosensor in the presence of different concentrations of 5-HT. And the error bars represent the standard deviations of three independent measurements with a single interferometer. Below: corresponding relative wavelength shift of the same naked microfiber biosensor in the presence of same range of 5-HT concentrations variation.

Fig. 4
Fig. 4

Comparison of optical response of fiber-optic sensor to 10 pM 5-HT and other potential interferents: 10 pM K+, 10 pM carbamide, 10 pM bovine serum albumin, and a mixture of 10 pM 5-HT, 10 pM K+, 10 pM carbamide and 10 pM bovine serum albumin under the same experimental condition.

Fig. 5
Fig. 5

Cyclical response of the as-prepared fiber-optic biosensor to detect 5-HT (at 10 pM) during 200 min. Loading experiments and unloading experiments were performed with 10 pM 5-HT and PBS, respectively.

Metrics