Abstract

Plasmonic lens imaging with some resolution enhancement methods are investigated in this paper, mainly by physical modeling and numerical simulations. The imaging model is based on the refined optical transfer function with extra reflection in imaging space and measured in variant magnetic and electric field components. The influences of structured light illumination and mask patterns' modifications are considered as well. As experimental demonstrations, L-shaped slits pattern with a half-pitch of 60 nm is successfully imaged with 50 nm air distance, by using plasmonic cavity lens lithography and off-axis illumination with 365 nm wavelength light. This study is believed to provide the model and methods for the design of high resolution plasmonic lens employed in nano lithography and optical storage etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep sub-wavelength imaging lithography by a reflective plasmonic slab

Changtao Wang, Ping Gao, Zeyu Zhao, Na Yao, Yanqin Wang, Ling Liu, Kaipeng Liu, and Xiangang Luo
Opt. Express 21(18) 20683-20691 (2013)

Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method

Shun Cao, Taisheng Wang, Qiang Sun, Bingliang Hu, and Weixing Yu
Opt. Express 25(4) 3863-3874 (2017)

193nm Superlens Imaging Structure for 20nm Lithography Node

Zhong Shi, Vladimir Kochergin, and Fei Wang
Opt. Express 17(14) 11309-11314 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
    [Crossref]
  2. M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [Crossref] [PubMed]
  5. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15(18), 11542–11552 (2007).
    [Crossref] [PubMed]
  6. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
    [Crossref]
  7. F. Xu, G. Chen, C. Wang, B. Cao, and Y. Lou, “Superlens imaging with a surface plasmon polariton cavity in imaging space,” Opt. Lett. 38(19), 3819–3822 (2013).
    [Crossref] [PubMed]
  8. Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
    [Crossref]
  9. S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
    [PubMed]
  10. P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
    [PubMed]
  11. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  12. J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
    [Crossref]
  13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [Crossref]
  14. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [Crossref] [PubMed]
  15. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
    [Crossref] [PubMed]
  16. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  17. R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
    [Crossref]
  18. H. Wang, L. Tsang, and S. Huang, “Loss and back-coupling effects on subwavelength imaging of three-dimensional superlens,” Opt. Lett. 37(12), 2262–2264 (2012).
    [Crossref] [PubMed]
  19. C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
    [Crossref]
  20. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
    [Crossref]
  21. X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
    [Crossref] [PubMed]
  22. M. Schøler and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A, Pure Appl. Opt. 11(11), 670–674 (2009).
  23. R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).
  24. N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
    [Crossref] [PubMed]
  25. J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
    [Crossref]
  26. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
    [Crossref]
  27. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
    [Crossref] [PubMed]
  28. J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
    [Crossref]
  29. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
    [Crossref]
  30. H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
    [Crossref] [PubMed]
  31. H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
    [Crossref] [PubMed]
  32. E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
    [Crossref] [PubMed]
  33. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
    [Crossref]
  34. H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
    [Crossref]
  35. Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
    [Crossref]
  36. K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
    [Crossref]
  37. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
    [Crossref] [PubMed]
  38. W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
    [Crossref]
  39. W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
    [Crossref]
  40. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  41. S. Yue, Z. Li, J. Chen, and Q. Gong, “Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity,” Opt. Express 20(17), 19060–19066 (2012).
    [Crossref] [PubMed]
  42. G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
    [Crossref]
  43. W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express 21(1), 618–625 (2013).
    [Crossref] [PubMed]
  44. Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
    [Crossref]
  45. W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
    [Crossref]
  46. B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
    [Crossref]
  47. Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
    [Crossref]
  48. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  49. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
    [Crossref] [PubMed]

2016 (1)

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

2015 (5)

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

2014 (4)

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

2013 (5)

B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
[Crossref]

W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express 21(1), 618–625 (2013).
[Crossref] [PubMed]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

F. Xu, G. Chen, C. Wang, B. Cao, and Y. Lou, “Superlens imaging with a surface plasmon polariton cavity in imaging space,” Opt. Lett. 38(19), 3819–3822 (2013).
[Crossref] [PubMed]

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

2012 (6)

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

H. Wang, L. Tsang, and S. Huang, “Loss and back-coupling effects on subwavelength imaging of three-dimensional superlens,” Opt. Lett. 37(12), 2262–2264 (2012).
[Crossref] [PubMed]

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

S. Yue, Z. Li, J. Chen, and Q. Gong, “Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity,” Opt. Express 20(17), 19060–19066 (2012).
[Crossref] [PubMed]

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

2011 (3)

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

2010 (5)

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[Crossref]

2009 (4)

M. Schøler and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A, Pure Appl. Opt. 11(11), 670–674 (2009).

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
[Crossref]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[Crossref] [PubMed]

2008 (3)

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[Crossref] [PubMed]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[Crossref]

2004 (2)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

2003 (2)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

2002 (1)

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

1995 (1)

Aizin, G. R.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Allen, S. J.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Arnold, M. D.

Blaikie, R.

Blaikie, R. J.

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[Crossref] [PubMed]

M. Schøler and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A, Pure Appl. Opt. 11(11), 670–674 (2009).

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15(18), 11542–11552 (2007).
[Crossref] [PubMed]

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Bogy, D. B.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Brolo, A. G.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Cao, B.

Cao, Y.

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Cescato, L.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Chang, C. M.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Chen, G.

Chen, H.

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

Chen, J.

Chen, S. C.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[Crossref]

Chen, W. T.

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Chou, S. Y.

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

Choy, C. C.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

Chum, C. C.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

Cui, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Deng, J.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

Ding, W.

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

Dong, J.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Du, C.

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
[Crossref]

Du, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Dyer, G. C.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Fang, L.

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Feng, Q.

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

Ferreira, J.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Gao, P.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

Gaylord, T. K.

Gong, Q.

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

Gossard, A. C.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Grann, E. B.

Grine, A. D.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Guo, Z.

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

Hahn, J. W.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

He, J.

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

Hensley, J. M.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Huang, D. W.

Huang, Q.

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

Huang, S.

Huang, Y. W.

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Jang, J.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

Jiang, B.

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Jung, H.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

Kang, G.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Kavak, H.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

Ke, L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

Kim, S.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

Kim, Y.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

Kotynski, R.

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[Crossref]

Lai, Z.

Large, N.

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Leong, E. S.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Leong, E. S. P.

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

Li, Z.

S. Yue, Z. Li, J. Chen, and Q. Gong, “Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity,” Opt. Express 20(17), 19060–19066 (2012).
[Crossref] [PubMed]

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Liang, P.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Liao, C. Y.

Liu, A. Q.

Liu, H.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Liu, J.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Liu, K.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Liu, L.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Liu, P.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Liu, Y.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

Liu, Y. J.

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Lou, Y.

Lu, C. H.

Lu, W. T.

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Luo, X.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, Y.

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

Ma, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

Maier, S. A.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Manjavacas, A.

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Mcnab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Melville, D.

Menezes, J. W.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Mikalopas, J.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Moharam, M. G.

Moore, C. P.

Nordlander, P.

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Park, Y.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pommet, D. A.

Preu, S.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Pu, M.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

Reno, J. L.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Rho, J.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Santos, M. J. L.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Schøler, M.

M. Schøler and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A, Pure Appl. Opt. 11(11), 670–674 (2009).

Shamonina, E.

R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).

Shaner, E. A.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Shao, D. B.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[Crossref]

Shen, L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

Sherwin, M. S.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Si, G.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Solymar, L.

R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).

Sridhar, S.

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Sun, C.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Sun, S.

Syms, R. R. A.

R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).

Tao, X.

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

Teng, J.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Teng, J. H.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

Teo, S. L.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

Tsai, D. P.

Tsang, L.

Tseng, M. L.

Ulinavila, E.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Vinh, N. Q.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

Wang, B.

B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Wang, C.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

F. Xu, G. Chen, C. Wang, B. Cao, and Y. Lou, “Superlens imaging with a surface plasmon polariton cavity in imaging space,” Opt. Lett. 38(19), 3819–3822 (2013).
[Crossref] [PubMed]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
[Crossref]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

Wang, H.

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

H. Wang, L. Tsang, and S. Huang, “Loss and back-coupling effects on subwavelength imaging of three-dimensional superlens,” Opt. Lett. 37(12), 2262–2264 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Wang, W.

Wang, Y.

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Wu, P. C.

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Wu, X.

B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
[Crossref]

Xie, J.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Xing, H.

Xiong, S.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Xiong, Y.

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Xu, F.

Xu, T.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

Xu, X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Yan, K.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Yan, L.

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

Yan, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Yang, P.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

Yang, X.

Yao, N.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

Yen, T. J.

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

Yue, S.

Zeng, B.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

Zhang, M. S.

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

Zhang, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

Zhang, Y.

B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
[Crossref]

Zhao, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

Zhao, X.

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

Zhao, Z.

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

Zhou, L.

Zong, Y.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

E. S. P. Leong, Y. J. Liu, B. Wang, and J. Teng, “Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems,” ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011).
[Crossref] [PubMed]

ACS Nano (1)

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, “Electron energy-loss spectroscopy calculation in finite-difference time-domain package,” ACS Photonics 2(3), 369–375 (2015).
[Crossref]

Adv. Funct. Mater. (3)

W. Ding, Y. Wang, H. Chen, and S. Y. Chou, “Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction contrast viewing angle brightness and low-glare,” Adv. Funct. Mater. 24(40), 6329–6339 (2014).
[Crossref]

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Choy, M. S. Zhang, L. Shen, S. A. Maier, and J. H. Teng, “High contrast superlens lithography engineered by loss reduction,” Adv. Funct. Mater. 22(18), 3777–3783 (2012).
[Crossref]

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater. 20(22), 3918–3924 (2010).
[Crossref]

Adv. Mater. (1)

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, “Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch,” Adv. Mater. 24(44), OP337–OP344 (2012).
[PubMed]

Appl. Phys. B (1)

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97(1), 175–179 (2009).
[Crossref]

Appl. Phys. Lett. (8)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[Crossref]

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[Crossref]

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100(100), 083506 (2012).
[Crossref]

J. Appl. Phys. (1)

C. Wang, C. Du, and X. Luo, “Surface plasmon resonance and super-resolution imaging by anisotropic superlens,” J. Appl. Phys. 106(6), 064314 (2009).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Schøler and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A, Pure Appl. Opt. 11(11), 670–674 (2009).

J. Opt. Soc. Am. A (1)

Nano Lett. (4)

H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High aspect subdiffraction-limit photolithography via a silver superlens,” Nano Lett. 12(3), 1549–1554 (2012).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Opt. Express (8)

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003).
[Crossref] [PubMed]

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[Crossref] [PubMed]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15(18), 11542–11552 (2007).
[Crossref] [PubMed]

X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband super-resolution imaging by a superlens with unmatched dielectric medium,” Opt. Express 16(24), 19686–19694 (2008).
[Crossref] [PubMed]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[Crossref] [PubMed]

N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express 19(17), 15982–15989 (2011).
[Crossref] [PubMed]

S. Yue, Z. Li, J. Chen, and Q. Gong, “Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity,” Opt. Express 20(17), 19060–19066 (2012).
[Crossref] [PubMed]

W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express 21(1), 618–625 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Opto-Electron. Rev. (1)

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[Crossref]

Phys. Rev. B (1)

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Physics (College Park Md.) (1)

R. R. A. Syms, E. Shamonina, and L. Solymar, “Near-field image transfer by magneto-inductive arrays: A modal perspective,” Physics (College Park Md.) 5(1), 8–25 (2010).

Plasmonics (9)

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie, and Y. Wang, “A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit,” Plasmonics 8(4), 1543–1550 (2013).
[Crossref]

B. Wang, X. Wu, and Y. Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8(4), 1535–1541 (2013).
[Crossref]

Q. Huang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Zhang, H. Wang, and X. Luo, “Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture,” Plasmonics 9(3), 699–706 (2014).
[Crossref]

W. Zhang, N. Yao, C. Wang, Z. Zhao, Y. Wang, P. Gao, and X. Luo, “Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography,” Plasmonics 9(6), 1333–1339 (2014).
[Crossref]

W. Zhang, H. Wang, C. Wang, N. Yao, Z. Zhao, Y. Wang, P. Gao, Y. Luo, W. Du, B. Jiang, and X. Luo, “Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination,” Plasmonics 10(1), 51–56 (2015).
[Crossref]

Z. Guo, Q. Huang, C. Wang, P. Gao, W. Zhang, Z. Zhao, L. Yan, and X. Luo, “Negative and positive impact of roughness and loss on subwavelength imaging for superlens structures,” Plasmonics 9(1), 103–110 (2014).
[Crossref]

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
[Crossref]

Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, and X. Luo, “Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme,” Plasmonics 10(6), 1607–1613 (2015).
[Crossref]

J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, and X. Luo, “Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution,” Plasmonics 8(2), 1073–1078 (2013).
[Crossref]

Sci. Rep. (2)

P. Liang, Y. Park, Y. Xiong, E. Ulinavila, Y. Wang, Z. Li, S. Xiong, J. Rho, C. Sun, and D. B. Bogy, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
[PubMed]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5, 15320–15330 (2015).
[Crossref] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of plasmonic imaging enhancement with wavefront engineering technique.
Fig. 2
Fig. 2 (a) Schematic diagram of OTF calculation for plasmonic cavity lens system in the measure of (b) H y , (c) E x and (d) E z . The calculations are performed by RCWA and multi-reflection approximation for lens with and without reflective Ag layer.
Fig. 3
Fig. 3 Theoretical and experimental results of hp 60 nm line-pair and dense lines with superlens and plasmonic cavity lens. Theoretical imaging results with superlens in (a)-(d) and plasmonic cavity lens in (e)-(h). The blue solid and red dashed cures are finite element method (FEM) and superresolution imaging model (SIM) intensity distribution in 20 nm depth photoresist, respectively.
Fig. 4
Fig. 4 Plasmonic lens imaging simulation with and without phase shifting mask configuration, for (a) 60 nm line-pair, (b) dense lines and (c) multi-lines. The other parameters as the same as those in Fig. 3.
Fig. 5
Fig. 5 Theoretical and experimental imaging results of hp 60 nm L-shaped dense lines with NA = 0 and 1.5 light illumination plasmonic cavity lens at object distance 50 nm.(a) Numerical results of normal illumination (NA = 0) plasmonic cavity lens. The inset is the cross-sectional E-intensity distribution along white dashed line. (b) Numerical results of quadrupole illumination (NA = 1.5) plasmonic cavity lens. The inset is the cross section E-intensity distribution along white dashed line. (c) and (d) are SEM picture of 2D resist patterns with NA = 0 and 1.5 illumination scheme, respectively.The other parameters as the same as those in Fig. 3. (scale bar, 1 μm)
Fig. 6
Fig. 6 (a) Dependence of imaging intensity contrast of different half-pitches objects on NA = 0, 0.84 and 1.5 illumination plasmonic cavity lens. (b) Imaging contrast of different feature size objects with different numerical aperture (NA)
Fig. 7
Fig. 7 Maximum air distance of different half-pitches objects with different illumination schemes and plasmonic lens system. By selecting image contrast of 0.4 as a criterion and the other parameters as the same as those in Fig. 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ E x ( x , y , z = z ) E y ( x , y , z = z ) E z ( x , y , z = z ) ] = [ E ˜ x , o b j ( k x , k y ) E ˜ y , o b j ( k x , k y ) k x E ˜ x , o b j + k y E ˜ y , o b j k z ] G ( k x , k y ) OTF ( k x , k y ) exp ( i k x x + i k y y ) d k x d k y .
H ˜ y ( k x ) = t ( k x ) ( 1 + r z ( k x ) e i k z , Pr ( d Pr d Pr , 1 ) ) ,
E ˜ x ( k x ) = t ( k x ) ( 1 r x ( k x ) e i k z , Pr ( d Pr d Pr , 1 ) ) k z , Pr ε SiO 2 ε Pr k z , SiO 2 ,
E ˜ z ( k x ) = t ( k x ) ( 1 + r z ( k x ) e i k z , Pr ( d Pr d Pr , 1 ) ) ε SiO 2 ε Pr .
E x ( x , z ) = G ( k x ) E x ( x , 0 ) t ( k x ) ( 1 r x ( k x ) e i k z , Pr ( d Pr d Pr , 1 ) ) e i k x x + i k z , Pr z k z , Pr ε SiO 2 ε Pr k z , SiO 2 d x d k x ,
E z ( x , z ) = G ( k x ) E z ( x , 0 ) t ( k x ) ( 1 + r z ( k x ) e i k z , Pr ( d Pr d Pr , 1 ) ) e i k x x + i k z , Pr z ε SiO 2 ε Pr d x d k x ,

Metrics