Abstract

Two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization

Lijia Jiang, Wei Xiong, Yushen Zhou, Ying Liu, Xi Huang, Dawei Li, Tommaso Baldacchini, Lan Jiang, and Yongfeng Lu
Opt. Express 24(12) 13687-13701 (2016)

Functional photoresists for sub-diffraction stimulated emission depletion lithography

Richard Wollhofen, Bianca Buchegger, Christine Eder, Jaroslaw Jacak, Johannes Kreutzer, and Thomas A. Klar
Opt. Mater. Express 7(7) 2538-2559 (2017)

Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy

Li Jia Jiang, Yun Shen Zhou, Wei Xiong, Yang Gao, Xi Huang, Lan Jiang, Tommaso Baldacchini, Jean-Francois Silvain, and Yong Feng Lu
Opt. Lett. 39(10) 3034-3037 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
    [Crossref]
  2. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  3. S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
    [Crossref]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref] [PubMed]
  5. D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
    [Crossref] [PubMed]
  6. L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
    [Crossref] [PubMed]
  7. T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
    [Crossref] [PubMed]
  8. J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
    [Crossref] [PubMed]
  9. W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
    [Crossref] [PubMed]
  10. H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
    [Crossref] [PubMed]
  11. F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
    [Crossref]
  12. T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
    [Crossref] [PubMed]
  13. D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
    [Crossref]
  14. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
    [Crossref] [PubMed]
  15. A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
    [Crossref] [PubMed]
  16. A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
    [Crossref] [PubMed]
  17. A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
    [Crossref] [PubMed]
  18. B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
    [Crossref] [PubMed]
  19. J. V. Crivello, “Synergistic effects in hybrid free radical/cationic photopolymerizations,” J. Polym. Sci. A Polym. Chem. 45(16), 3759–3769 (2007).
    [Crossref]
  20. C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
    [Crossref]
  21. L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24(12), 13687–13701 (2016).
    [Crossref] [PubMed]
  22. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref] [PubMed]
  23. F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
    [Crossref]
  24. S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
    [Crossref]
  25. L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
    [Crossref] [PubMed]
  26. A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
    [Crossref]
  27. T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
    [Crossref] [PubMed]
  28. J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
    [Crossref]
  29. D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
    [Crossref]
  30. R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
    [Crossref]
  31. G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
    [Crossref]
  32. B. Modrek, B. Parker, and S. T. Spence, “Method for curing partially polymerized parts,” U.S. patent 5164128 A (2012).
  33. J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
    [Crossref]
  34. T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
    [Crossref]
  35. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
    [Crossref]
  36. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  37. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
    [Crossref] [PubMed]
  38. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enabled high-precision microfabrication of three-dimensional structures,” Opt. Express 17(23), 20945–20951 (2009).
    [Crossref] [PubMed]
  39. D. Karalekas and A. Aggelopoulos, “Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin,” J. Mater. Process. Technol. 136(1-3), 146–150 (2003).
    [Crossref]
  40. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
    [Crossref] [PubMed]
  41. Q. Sun, K. Ueno, and H. Misawa, “In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process,” Opt. Lett. 37(4), 710–712 (2012).
    [Crossref] [PubMed]
  42. E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers (Basel) 8(8), 297 (2016).
    [Crossref]
  43. K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
    [Crossref]
  44. T. Scherzer, “Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time fourier transform infrared spectroscopy,” J. Polym. Sci. A Polym. Chem. 42(4), 894–901 (2004).
    [Crossref]
  45. R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
    [Crossref]
  46. J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
    [Crossref] [PubMed]
  47. C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
    [Crossref]
  48. V. A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev. 91(2), 99–117 (1991).
    [Crossref]

2016 (6)

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers (Basel) 8(8), 297 (2016).
[Crossref]

L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24(12), 13687–13701 (2016).
[Crossref] [PubMed]

2015 (10)

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (5)

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref] [PubMed]

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

2012 (3)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Q. Sun, K. Ueno, and H. Misawa, “In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process,” Opt. Lett. 37(4), 710–712 (2012).
[Crossref] [PubMed]

2011 (1)

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

2010 (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

2009 (3)

2008 (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

2007 (1)

J. V. Crivello, “Synergistic effects in hybrid free radical/cationic photopolymerizations,” J. Polym. Sci. A Polym. Chem. 45(16), 3759–3769 (2007).
[Crossref]

2006 (1)

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
[Crossref]

2005 (1)

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

2004 (2)

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

T. Scherzer, “Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time fourier transform infrared spectroscopy,” J. Polym. Sci. A Polym. Chem. 42(4), 894–901 (2004).
[Crossref]

2003 (1)

D. Karalekas and A. Aggelopoulos, “Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin,” J. Mater. Process. Technol. 136(1-3), 146–150 (2003).
[Crossref]

2002 (2)

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[Crossref]

2001 (1)

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

2000 (1)

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

1999 (2)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

1997 (1)

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

1991 (1)

V. A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev. 91(2), 99–117 (1991).
[Crossref]

1946 (1)

C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
[Crossref]

Aggelopoulos, A.

D. Karalekas and A. Aggelopoulos, “Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin,” J. Mater. Process. Technol. 136(1-3), 146–150 (2003).
[Crossref]

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

Ahrens, C. H.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Atwater, H. A.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Autenrieth, T. J.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Baldacchini, T.

Barlow, S.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Bastmeyer, M.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Bauer, J.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

Beljonne, D.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

Bhanu, V. A.

V. A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev. 91(2), 99–117 (1991).
[Crossref]

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Braun, P.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Brédas, J.-L.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

Brunetti, V.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Buividas, R.

Burmeister, F.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Burresi, M.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Chen, Q.-D.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Chen, V. H.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Chen, X.-B.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Chew, S.

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

Chichkov, B. N.

Choo, Y. S.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Cicha, K.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Ciofani, G.

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Clarke, N.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

Crivello, J. V.

J. V. Crivello, “Synergistic effects in hybrid free radical/cationic photopolymerizations,” J. Polym. Sci. A Polym. Chem. 45(16), 3759–3769 (2007).
[Crossref]

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

De Luca, E.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

De Vittorio, M.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Decker, C.

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

Decker, D.

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

Dong, W.-F.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Ehrlich, J. E.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Farsari, M.

Filippeschi, C.

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Findeisen, C.

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

Fischer, J.

Fotakis, C.

Frank, S. C.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Fredel, M.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Frenzel, T.

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Fuh, J. Y. H.

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Fujita, S.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Gadonas, R.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Gao, Y.

Gdoutos, E. E.

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

Greer, F.

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

Greer, J. R.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

Gu, M.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
[Crossref]

Gumbsch, P.

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

Hague, R.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Harris, R.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Hasegawa, T.

Heikal, A. A.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ho, S. H.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Hou, Y.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Houbertz, R.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Hrelescu, C.

Hu, Z.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

Huang, T.-Y.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Huang, X.

Jacak, J.

Jang, D.

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

Jiang, L.

Jiang, L. J.

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

Juodkazis, S.

Kadic, M.

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Karalekas, D.

D. Karalekas and A. Aggelopoulos, “Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin,” J. Mater. Process. Technol. 136(1-3), 146–150 (2003).
[Crossref]

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

Kaschke, J.

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref] [PubMed]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Katzmann, J.

Kawata, S.

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[Crossref]

Kennedy, S.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Khabiboulline, E. T.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Kishore, K.

V. A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev. 91(2), 99–117 (1991).
[Crossref]

Klar, T. A.

Kochmann, D. M.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

Kraft, O.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

Kretschmer, C. B.

C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
[Crossref]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kuo, C.-H.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Leménager, G.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Li, D.

Li, W.

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

Li, Z.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Lin, J.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Liska, R.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Liu, D.-X.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Liu, Y.

L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24(12), 13687–13701 (2016).
[Crossref] [PubMed]

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

Lu, L.

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Lu, Y.

Lu, Y. F.

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

Malinauskas, M.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

Mansour, S.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Mao, A.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Marder, S. R.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Marino, A.

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Markut-Kohl, R.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Martella, D.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Maruo, S.

Mateos, A. J.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

Mattoli, V.

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Matulaitiene, I.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Mazzolai, B.

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

McCord-Maughon, D.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Meza, L. R.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

Mhanna, R.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Misawa, H.

Miyazawa, T.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Mooney, D.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Mueller, J. B.

Nee, A. Y. C.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Nelson, B. J.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Nguyen Thi Viet, T.

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

Niaura, G.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Nolte, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Nowakowska, J.

C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
[Crossref]

Orsini, P.

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Ovsianikov, A.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[Crossref] [PubMed]

Paipulas, D.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

Paolo Pompa, P.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Parker, T. C.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

Parmeggiani, C.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Pasqualetti, M.

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Pellegrini, M.

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Pellegrino, M.

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

Pellegrino, T.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Peng, S.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Perry, J. W.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Petruska, A. J.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Pires, A. T. N.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Pisanello, F.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Potma, E. O.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qiu, F.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Rapti, D.

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

Rekštyte, S.

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Röckel, H.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rumi, M.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sakar, M. S.

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

Saleh, N.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Salmoria, G. V.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Scheiwe, A. C.

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Scherzer, T.

T. Scherzer, “Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time fourier transform infrared spectroscopy,” J. Polym. Sci. A Polym. Chem. 42(4), 894–901 (2004).
[Crossref]

Schroer, A.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

Schwaiger, R.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

Serbin, J.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
[Crossref]

Shen, Z. X.

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

Shizhou, X.

Sileo, L.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Silvain, J. F.

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

Silvain, J.-F.

Simona, B. R.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Soldi, V.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Spagnolo, B.

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Stadlmann, K.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Stampfl, J.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Steenhusen, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Sun, H.-B.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[Crossref]

Sun, Q.

Sun, Y.-L.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Tan, C. C.

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

Tanaka, T.

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[Crossref]

Thayumanavan, S.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Tünnermann, A.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Ueno, K.

Unterreiner, A.-N.

Vamvakaki, M.

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

von Freymann, G.

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers (Basel) 8(8), 297 (2016).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Waller, E. H.

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers (Basel) 8(8), 297 (2016).
[Crossref]

Wang, W. L.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Wasylczyk, P.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Weber-Koehl, E.

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

Wegener, M.

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref] [PubMed]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Wiebe, R.

C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
[Crossref]

Wiersma, D. S.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Wolf, T. J. A.

Wollhofen, R.

Wong, Y. S.

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

Wu, S.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
[Crossref]

Wu, S.-T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xiong, W.

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Yang, R.-Z.

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Yoshimura, N.

Zadoyan, R.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Zeitner, U. D.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Zelhofer, A. J.

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

Zhang, L.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Zhang, R.

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Zhou, X.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Zhou, Y.

Zhou, Y. S.

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

Zimmerley, M.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Žukauskas, A.

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. Marino, G. Ciofani, C. Filippeschi, M. Pellegrino, M. Pellegrini, P. Orsini, M. Pasqualetti, V. Mattoli, and B. Mazzolai, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl. Mater. Interfaces 5(24), 13012–13021 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater, “Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS Photonics 3(6), 1131–1137 (2016).
[Crossref]

Adv. Funct. Mater. (2)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, and B. J. Nelson, “Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery,” Adv. Funct. Mater. 25(11), 1666–1671 (2015).
[Crossref]

Adv. Mater. (5)

T.-Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu, X.-B. Chen, S. Kennedy, D. Mooney, and B. J. Nelson, “3D Printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents,” Adv. Mater. 27(42), 6644–6650 (2015).
[Crossref] [PubMed]

W. Xiong, Y. Liu, L. J. Jiang, Y. S. Zhou, W. Li, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication,” Adv. Mater. 28(10), 2002–2009 (2016).
[Crossref] [PubMed]

H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S. Wiersma, “Light-fueled microscopic walkers,” Adv. Mater. 27(26), 3883–3887 (2015).
[Crossref] [PubMed]

T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, and M. Wegener, “Tailored buckling microlattices as reusable light-weight shock absorbers,” Adv. Mater. 28(28), 5865–5870 (2016).
[Crossref] [PubMed]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

AIP Adv. (1)

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Appl. Phys. Lett. (1)

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[Crossref]

Biomaterials (1)

A. C. Scheiwe, S. C. Frank, T. J. Autenrieth, M. Bastmeyer, and M. Wegener, “Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds,” Biomaterials 44, 186–194 (2015).
[Crossref] [PubMed]

Chem. Rev. (1)

V. A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev. 91(2), 99–117 (1991).
[Crossref]

Exp. Mech. (1)

D. Karalekas, D. Rapti, E. E. Gdoutos, and A. Aggelopoulos, “Investigation of shrinkage-induced stresses in stereolithography photo-curable resins,” Exp. Mech. 42(4), 439–444 (2002).
[Crossref]

Ind. Eng. Chem. (1)

C. B. Kretschmer, J. Nowakowska, and R. Wiebe, “Solubility of Oxygen and Nitrogen in Organic Solvents from −25° to 50° C,” Ind. Eng. Chem. 38(5), 506–509 (1946).
[Crossref]

J. Am. Chem. Soc. (1)

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure−property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000).
[Crossref]

J. Appl. Phys. (1)

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

J. Laser Appl. (1)

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

J. Mater. Process. Technol. (3)

J. Y. H. Fuh, L. Lu, C. C. Tan, Z. X. Shen, and S. Chew, “Processing and characterising photo-sensitive polymer in the rapid prototyping process,” J. Mater. Process. Technol. 89–90, 211–217 (1999).
[Crossref]

J. Y. H. Fuh, Y. S. Choo, L. Lu, A. Y. C. Nee, Y. S. Wong, W. L. Wang, T. Miyazawa, and S. H. Ho, “Post-cure shrinkage of photo-sensitive material used in laser lithography process,” J. Mater. Process. Technol. 63(1-3), 887–891 (1997).
[Crossref]

D. Karalekas and A. Aggelopoulos, “Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin,” J. Mater. Process. Technol. 136(1-3), 146–150 (2003).
[Crossref]

J. Mater. Sci. (1)

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

J. Photochem. Photobiol. A (1)

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerization for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181(1), 1–11 (2006).
[Crossref]

J. Phys. Chem. B (1)

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

J. Polym. Sci. A Polym. Chem. (2)

J. V. Crivello, “Synergistic effects in hybrid free radical/cationic photopolymerizations,” J. Polym. Sci. A Polym. Chem. 45(16), 3759–3769 (2007).
[Crossref]

T. Scherzer, “Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time fourier transform infrared spectroscopy,” J. Polym. Sci. A Polym. Chem. 42(4), 894–901 (2004).
[Crossref]

Laser Photonics Rev. (2)

A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]

D.-X. Liu, Y.-L. Sun, W.-F. Dong, R.-Z. Yang, Q.-D. Chen, and H.-B. Sun, “Dynamic laser prototyping for biomimetic nanofabrication,” Laser Photonics Rev. 8(6), 882–888 (2014).
[Crossref]

Nanoscale (1)

A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, “Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization,” Nanoscale 7(7), 2841–2850 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

D. Jang, L. R. Meza, F. Greer, and J. R. Greer, “Fabrication and deformation of three-dimensional hollow ceramic nanostructures,” Nat. Mater. 12(10), 893–898 (2013).
[Crossref] [PubMed]

Nature (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Polym. Test. (1)

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi, and A. T. N. Pires, “Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods,” Polym. Test. 24(2), 157–162 (2005).
[Crossref]

Polymer (Guildf.) (1)

C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer (Guildf.) 42(13), 5531–5541 (2001).
[Crossref]

Polymers (Basel) (1)

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers (Basel) 8(8), 297 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 112(37), 11502–11507 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Spagnolo, V. Brunetti, G. Leménager, E. De Luca, L. Sileo, T. Pellegrino, P. Paolo Pompa, M. De Vittorio, and F. Pisanello, “Three-dimensional cage-like microscaffolds for cell invasion studies,” Sci. Rep. 5, 10531 (2015).
[Crossref] [PubMed]

Other (1)

B. Modrek, B. Parker, and S. T. Spence, “Method for curing partially polymerized parts,” U.S. patent 5164128 A (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Power-test: 50 µm3, 10 µm unit-cell, octet-truss cubes were printed within increasing laser peak intensity from 0.2 to 0.6 TW/cm2 utilizing piezo scan mode and a 63x1.4NA objective. (a) Scanning electron micrograph of the green-state power-test. Magnified image of a collapsed octet structure fabricated at 0.26 TW/cm2. (b) Post-print, UV-cured power-test. Magnified imaged of a standing octet structure fabricated at 0.26 TW/cm2. (c) Line width/feature size impact on density as a function of laser peak intensity. Square (green) data points represent the ‘green-state’, as printed sample of octet-truss structures shown in 1a. Circle (blue) data points represent the UV post-cured sample shown in 1b.
Fig. 2
Fig. 2 Analysis of the degree of conversion (DC) of TPP resin IP-DIP before and after UV-post curing, Woodpile structures were fabricated using 0.88-1.19 TW/cm2 laser peak intensities with galvo scan mode and a 63x1.4NA objective. (a) Scanning electron micrograph of a 50x50x100 µm3 woodpile pillar with 2 µm XY spacing and 1 µm spacing. (b) Raman spectra of IP-DIP before and after UV-curing. (c) DC dependence on UV-post curing, where the green (square) data points represent the as-printed material and the blue (circle) data points represent the UV post-cured material.
Fig. 3
Fig. 3 Young’s modulus and yield strength vs density and the effect of post UV-curing. Both Young’s modulus and yield strength follow quadratic relationships with density, Eρ2. Dash lines are fitting results using power functions. Green (square) data points represent the as-printed, ‘green-state’ material and the blue (circle) data points are of UV post-cured material.
Fig. 4
Fig. 4 Chemical level depiction illustrating radical formation leading to increased cross-linking resulting from a post-print UV exposure.
Fig. 5
Fig. 5 (a) TPP compatible resin formulation consisting of a trifunctional acrylate monomer PETA, and a TPP-photoinitiator BPAS-PI. Woodpile structures were fabricated with 0.11 TW/cm2 laser peak intensity under galvo scan mode with a 25x0.8NA objective (b) Raman spectra of the TPP resin components and accompanying curing conditions. (c) Scanning electron micrograph of a 100x100x50 µm3, 2 µm XY spacing log-pile pillar. (d) Degree of conversions obtained under different curing conditions; 1) green state (as printed), i.e. no post-curing, 2) post UV-curing without DMPA, 3) post UV-curing with DMPA.

Metrics