Abstract

We demonstrate, what we believe to be, the first mathematical model of image formation in optical coherence tomography, based on Maxwell’s equations, applicable to general three-dimensional samples. It is highly realistic and represents a significant advance on a previously developed model, which was applicable to two-dimensional samples only. The model employs an electromagnetic description of light, made possible by using the pseudospectral time-domain method for calculating the light scattered by the sample which is represented by a general refractive index distribution. We derive the key theoretical and computational advances required to develop this model. Two examples are given of image formation for which analytic comparisons may be calculated: point scatterers and finite sized spheres. We also provide a more realistic example of C-scan formation when imaging turbid media. We anticipate that this model will be important for various applications in OCT, such as image interpretation and the development of quantitative techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full wave model of image formation in optical coherence tomography applicable to general samples

Peter R.T. Munro, Andrea Curatolo, and David D. Sampson
Opt. Express 23(3) 2541-2556 (2015)

Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation

Paweł Ossowski, Andrea Curatolo, David D. Sampson, and Peter R. T. Munro
Biomed. Opt. Express 9(7) 3122-3136 (2018)

Classification of biological micro-objects using optical coherence tomography: in silico study

Paweł Ossowski, Maciej Wojtkowski, and Peter RT Munro
Biomed. Opt. Express 8(8) 3606-3626 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121, 2489–2500 (2014).
    [Crossref] [PubMed]
  2. T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
    [Crossref]
  3. E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
    [Crossref] [PubMed]
  4. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
    [Crossref] [PubMed]
  5. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  6. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
    [Crossref]
  7. J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
    [Crossref]
  8. M. Villiger and T. Lasser, “Image formation and tomogram reconstruction in optical coherence tomography,” J. Opt. Soc. Am. A 27, 2216–2228 (2010).
    [Crossref]
  9. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [Crossref]
  10. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [Crossref]
  11. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [Crossref] [PubMed]
  12. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
    [Crossref] [PubMed]
  13. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
    [Crossref] [PubMed]
  14. A. Tycho, T. M. Jorgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676–6691 (2002).
    [Crossref] [PubMed]
  15. Q. Lu, X. Gan, M. Gu, and Q. Luo, “Monte Carlo modeling of optical coherence tomography imaging through turbid media,” Appl. Opt. 43, 1628–1637 (2004).
    [Crossref] [PubMed]
  16. I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllyla, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008).
    [Crossref] [PubMed]
  17. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
    [Crossref]
  18. P. R. T. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Opt. Express 23, 2541–2556 (2015).
    [Crossref] [PubMed]
  19. T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
    [Crossref]
  20. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17, 13157–13167 (2009).
    [Crossref] [PubMed]
  21. T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
    [Crossref]
  22. P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
    [Crossref]
  23. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008).
    [Crossref] [PubMed]
  24. D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
    [Crossref]
  25. Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
    [Crossref]
  26. S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
    [Crossref]
  27. A. S. F. C. Silva and A. L. Correia, “From optical coherence tomography to Maxwell’s equations,” IEEE 3rd Portuguese meeting in bioengineering (ENBENG), Braga, Portugal, 20–23 Feb, 2013.
  28. T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
    [Crossref]
  29. P. R. T. Munro, D. Engelke, and D. D. Sampson, “A compact source condition for modelling focused fields using the pseudospectral time-domain method,” Opt. Express 22, 5599–5613 (2014).
    [Crossref] [PubMed]
  30. P. R. T. Munro, “Exploiting data redundancy in computational optical imaging,” Opt. Express 23, 30603–30617 (2015).
    [Crossref] [PubMed]
  31. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
    [Crossref]
  32. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
    [Crossref] [PubMed]
  33. Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Let. 15, 158–165 (1997).
    [Crossref]
  34. V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).
  35. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
    [Crossref]
  36. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
    [Crossref]
  37. A. Taflove and S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).
  38. A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
    [Crossref] [PubMed]
  39. M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005).
    [Crossref]
  40. M. Gu, C. J. R. Sheppard, and X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
    [Crossref]
  41. P. R. T. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005).
    [Crossref] [PubMed]
  42. P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
    [Crossref]
  43. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  44. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19, 19480–19485 (2011).
    [Crossref] [PubMed]
  45. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
    [Crossref]
  46. P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki, and M. Wojtkowski, “Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup,” Opt. Express 23, 27724–27738 (2015).
    [Crossref] [PubMed]
  47. I. R. Çapoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208–19220 (2008).
    [Crossref]

2016 (2)

T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
[Crossref]

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

2015 (5)

S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

P. R. T. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Opt. Express 23, 2541–2556 (2015).
[Crossref] [PubMed]

P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki, and M. Wojtkowski, “Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup,” Opt. Express 23, 27724–27738 (2015).
[Crossref] [PubMed]

P. R. T. Munro, “Exploiting data redundancy in computational optical imaging,” Opt. Express 23, 30603–30617 (2015).
[Crossref] [PubMed]

2014 (3)

P. R. T. Munro, D. Engelke, and D. D. Sampson, “A compact source condition for modelling focused fields using the pseudospectral time-domain method,” Opt. Express 22, 5599–5613 (2014).
[Crossref] [PubMed]

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121, 2489–2500 (2014).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

2013 (3)

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
[Crossref] [PubMed]

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

2011 (2)

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19, 19480–19485 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (4)

2006 (1)

2005 (2)

2004 (2)

2002 (1)

2000 (1)

1999 (1)

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

1998 (3)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

1997 (3)

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Let. 15, 158–165 (1997).
[Crossref]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
[Crossref]

J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[Crossref]

1995 (2)

Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
[Crossref] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

1991 (1)

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

1919 (1)

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Andersen, P. E.

Backman, V.

Birngruber, R.

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Boppart, S. A.

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Bouma, B.E.

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Brenner, T.

T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
[Crossref]

Bukowska, D.

Çapoglu, I. R.

Carney, P. S.

Chen, Z.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

Correia, A. L.

A. S. F. C. Silva and A. L. Correia, “From optical coherence tomography to Maxwell’s equations,” IEEE 3rd Portuguese meeting in bioengineering (ENBENG), Braga, Portugal, 20–23 Feb, 2013.

Coupland, J. M.

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[Crossref]

Curatolo, A.

Derzsi, L.

DiMarzio, C. A.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Eljaszewicz, A.

Engelhardt, R.

Engelke, D.

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Frigo, M.

M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005).
[Crossref]

Fujimoto, J.G.

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Gan, X.

Garstecki, P.

Gong, J.

Gouldstone, A.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

Gu, M.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).

Higdon, P.

P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

Higdon, P. D.

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
[Crossref]

Huang, S.-H.

S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Huang, S.-L.

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Hung, Y.-T.

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Ignatowsky, V. S.

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Jang, I.-K.

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Johnson, S.

M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005).
[Crossref]

Jorgensen, T. M.

Juškaitis, R.

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
[Crossref]

Kaeli, D.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

Kaestle, R.

E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
[Crossref] [PubMed]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Kato, K.

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Keane, P. A.

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121, 2489–2500 (2014).
[Crossref] [PubMed]

Kennedy, B. F.

Kennedy, B.F.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Kienle, A.

T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
[Crossref]

Kirillin, M.

Knuttel, A.

Kriezis, E. E.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Kuzmin, V.

Lasser, T.

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Li, X.

Lindmo, T.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Let. 15, 158–165 (1997).
[Crossref]

Lobera, J.

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[Crossref]

Lorenser, D.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Lu, Q.

Luo, Q.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Marks, D. L.

Meglinski, I.

Milner, T. E.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

Munro, P. R. T.

Munro, P.R.T.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Myllyla, R.

Nelson, J. S.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

Ossowski, P.

Pan, Y.

Raiter-Smiljanic, A.

Ralston, T. S.

Reed, D. C.

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Reitzle, D.

T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

Robinson, J. P.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

Rosperich, J.

Sadda, S. R.

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121, 2489–2500 (2014).
[Crossref] [PubMed]

Sampson, D. D.

Sampson, D.D.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Sattler, E.

E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
[Crossref] [PubMed]

Schmitt, J. M.

Sheppard, C.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Sheppard, C. J. R.

Silva, A. S. F. C.

A. S. F. C. Silva and A. L. Correia, “From optical coherence tomography to Maxwell’s equations,” IEEE 3rd Portuguese meeting in bioengineering (ENBENG), Braga, Portugal, 20–23 Feb, 2013.

Silva, M. R.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

Singe, C.C.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Smithies, D. J.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

Sreekumar, P.

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

Swedish, T. B.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

Szkulmowska, A.

Taflove, A.

Thrane, L.

Török, P.

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008).
[Crossref] [PubMed]

P. R. T. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005).
[Crossref] [PubMed]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
[Crossref] [PubMed]

P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

Tseng, S. H.

S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Tycho, A.

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Villiger, M.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Wang, L. V.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Wang, S. J.

S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Welzel, J.

E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
[Crossref] [PubMed]

Wiese, M.

Wilson, T.

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
[Crossref]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Wojtkowski, M.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[Crossref]

Yi, J.

Yonetsu, T.

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Yura, H. T.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Appl. Opt. (3)

Circ. J. (1)

T. Yonetsu, B.E. Bouma, K. Kato, J.G. Fujimoto, and I.-K. Jang, “Optical coherence tomography - 15 years in cardiology -,” Circ. J. 77, 1933–1940 (2013).
[Crossref]

Comput. Meth. Prog. Bio. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

IEEE T. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[Crossref]

J. Biomed. Opt. (4)

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

T. Brenner, D. Reitzle, and A. Kienle, “Optical coherence tomography images simulated with an analytical solution of Maxwell’s equations for cylinder scattering,” J. Biomed. Opt. 21, 45001 (2016).
[Crossref]

E. Sattler, R. Kaestle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18, 061224 (2013).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

J. Mod. Opt. (1)

P. Török, P. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998).
[Crossref]

J. Opt. Soc. Am. A (5)

Meas. Sci. Technol. (1)

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[Crossref]

Microw. Opt. Techn. Let. (1)

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Let. 15, 158–165 (1997).
[Crossref]

Ophthalmology (1)

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121, 2489–2500 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298–313 (1997).
[Crossref]

P. Török, P. Higdon, R. Juškaitis, and T. Wilson, “Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers,” Opt. Commun. 155, 335–341 (1998).
[Crossref]

Opt. Express (10)

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
[Crossref] [PubMed]

P. R. T. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005).
[Crossref] [PubMed]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19, 19480–19485 (2011).
[Crossref] [PubMed]

P. R. T. Munro, D. Engelke, and D. D. Sampson, “A compact source condition for modelling focused fields using the pseudospectral time-domain method,” Opt. Express 22, 5599–5613 (2014).
[Crossref] [PubMed]

P. R. T. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Opt. Express 23, 2541–2556 (2015).
[Crossref] [PubMed]

P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki, and M. Wojtkowski, “Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup,” Opt. Express 23, 27724–27738 (2015).
[Crossref] [PubMed]

P. R. T. Munro, “Exploiting data redundancy in computational optical imaging,” Opt. Express 23, 30603–30617 (2015).
[Crossref] [PubMed]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008).
[Crossref] [PubMed]

I. R. Çapoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208–19220 (2008).
[Crossref]

J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17, 13157–13167 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[Crossref] [PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Proc. IEEE (1)

M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005).
[Crossref]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

Proc. SPIE (4)

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elastin in lung,” Proc. SPIE 7904, 79040H (2011).
[Crossref]

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

S.-H. Huang, S. J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Sci. Rep. (1)

A. Curatolo, P.R.T. Munro, D. Lorenser, P. Sreekumar, C.C. Singe, B.F. Kennedy, and D.D. Sampson, “Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6, 23483 (2016).
[Crossref] [PubMed]

T. Opt. Inst. Petrograd (1)

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Other (5)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

A. S. F. C. Silva and A. L. Correia, “From optical coherence tomography to Maxwell’s equations,” IEEE 3rd Portuguese meeting in bioengineering (ENBENG), Braga, Portugal, 20–23 Feb, 2013.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

A. Taflove and S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the modelled OCT system. ϕs is the electric field produced by focusing the fiber mode into the sample space and Esc is the field scattered by the sample back towards the objective lens. ns is the refractive index distribution of the sample.
Fig. 2
Fig. 2 Flow diagram illustrating the principal components of the imaging model.
Fig. 3
Fig. 3 Schematic diagram and notation of the optical focusing system. Each position vector ri = (xi, yi) denotes a transverse position in the space denoted in the diagram. Ra is the physical radius of the aperture of the system, zobs is the axial location of plane where the scattered field is sampled and nb is the refractive index of the material in which the sample is embedded, which has an interface with air at z3 = −h.
Fig. 4
Fig. 4 Volume, surface, line and error plots of unaberrated, depth dependent, PSFs.
Fig. 5
Fig. 5 (a) Shows a high resolution image of the magnitude of the OCT B-scan calculated analytically. The transparent circle indicates the location of the sphere, and has been stretched in the z direction by 10% to account for the refractive index of the sphere. (b) and (c) show the magnitude of the OCT B-scan calculated using the FDTD and analytic methods, respectively, with equal pixel size. (c) and (d) show plots of the OCT magnitude and real part for an A-scan through the sphere center, for the FDTD and analytic methods, respectively.
Fig. 6
Fig. 6 (a) Plots showing the scattering coefficient (µs) for a sphere of diameter 1µm (illustrated for reference in (b)) and the discretized scatterers shown in (c) and (d) as a function of refractive index. The shape corresponding to “Discretized - 1” is shown in (c) and “Discretized - 2” in d). Axis labels in (b)-(d) are PSTD grid indices where i, j and k correspond to indices in the x, y and z-directions, respectively.
Fig. 7
Fig. 7 Plots of the component of the time averaged Poynting vector of scattered light directed away from the scatterer, which is centered on the origin, and normal to each plane, normalised by the irradiance of the incident plane wave. The depicted planes thus correspond to forward and back scattered light.
Fig. 8
Fig. 8 Calculation of aberrated PSFs. Each image in the top row shows slices through a C-scan on the same log scale corresponding to scattering coefficients of 0 (i.e. no scatterers), 2 and 4 mm−1 in the aberrating layer. The lower row of images shows en-face planes through the PSF target where each image is displayed on its own linear scale.

Tables (1)

Tables Icon

Table 1 Base parameters of the numerical simulations. Note that MFD stands for mode field diameter and symbols are defined in Fig. 3.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r 1 ) = exp ( | r 1 | 2 / W f 2 ) ,
ϕ s ( r 3 , z 3 , k ) = i k f 2 2 π | r ˜ 2 | NA 2 e ^ ( r ˜ 2 ) exp ( ( π W f | r ˜ 2 | β λ ) 2 ) exp ( i k r ˜ 2 r 3 ) exp ( i k z 3 1 | r ˜ 2 | 2 ) d 2 r ˜ 2 1 | r ˜ 2 | 2 ,
a j = { j 0 j < N / 2 0 j = N / 2 j N N / 2 < j N 1 .
J s * ( t ) = { k ^ × ϕ s ( r 3 , z s , k 0 ) exp ( i ω 0 ( t t 0 ) ) exp ( π ( ( t t 0 ) / W ) 2 ) } ,
α s c ( k ) = 2 U s c ( r 1 , k ) ϕ f ( r 1 ) d 2 r 1 ,
U s c ( r 1 , k ) = { { U s c ( r 3 , z o b s , k ) } P ( q 3 , z o b s , k ) } ,
2 f ( r ) g * ( r ) d 2 r = 2 f ˜ ( q ) g ˜ * ( q ) d 2 q
α s c ( k ) = 2 U ˜ s c ( q 3 , z o b s , k ) P ( q 3 , z o b s , k ) ϕ ˜ f ( f 2 f 1 q 3 ) d 2 q 3 = 2 U s c ( r 3 , z o b s , k ) { P ( q 3 , z o b s , k ) ϕ ˜ f ( f 2 f 1 q 3 ) } d 2 r 3 ,
I d ( k ) = S ( k ) | α s c ( k ) + α r e f ( k ) | 2 ,
I ˜ ( z 3 z r e f ) = 0 I d ( k ) exp ( i k 2 ( z 3 z r e f ) ) d ( 1 / λ ) ,
[ 1 c Δ t sin ( ω Δ t 2 ) ] 2 = [ 1 Δ x sin ( k ˜ x Δ x 2 ) ] 2 + [ 1 Δ y sin ( k ˜ y Δ y 2 ) ] 2 + [ 1 Δ z sin ( k ˜ z Δ z 2 ) ] 2 ,
k ˜ = | k ˜ | = 2 c Δ t sin ( ω Δ t 2 ) .
ϵ j = i | | I p s f ( x i , z j ) | | O C T ( x i , z j ) | | 2 / i | I p s f ( x i , z j ) | 2
e p ( r ˜ 2 , r s ; r 3 ) = A ( r ˜ 2 ) e ^ ( r ˜ 2 ) exp ( i k ϕ p ( r ˜ 2 , r 3 ) ) exp ( i k ϕ s ( r ˜ 2 , r s ) )
ϕ ( r 3 ) = | r ˜ 2 | NA 2 e p ( r ˜ 2 , r s ; r 3 ) d 2 r ˜ 2 .
α s c ( k ) = 2 ( i ^ E s c ( r 3 ) ) ( i ^ ϕ ( r 3 ) ) d 2 r 3 = 2 | r ˜ 2 | NA 2 | r ˜ 2 | NA 2 A ( r ˜ 2 ) exp ( i k ϕ s ( r ˜ 2 , r s ) ) A ( r ˜ 2 ) exp ( i k ϕ s ( r ˜ 2 , r s ) ) ( i ^ e Mie ( r ˜ 2 ; r 3 ) ) ( i ^ e ^ ( r ˜ 2 ) exp ( i k ϕ p ( r ˜ 2 , r 3 ) ) ) d 2 r ˜ 2 d 2 r ˜ 2 d 2 r 3 = | r ˜ 2 | NA 2 | r ˜ 2 | NA 2 A ( r ˜ 2 ) exp ( i k ϕ s ( r ˜ 2 , r s ) ) A ( r ˜ 2 ) exp ( i k ϕ s ( r ˜ 2 , r s ) ) K ( r ˜ 2 , r ˜ 2 ) d 2 r ˜ 2 d 2 r ˜ 2
K ( r ˜ 2 , r ˜ 2 ) = 2 ( i ^ e Mie ( r ˜ 2 ; r 3 ) ) ( i ^ e ^ ( r ˜ 2 ) exp ( i k ϕ p ( r ˜ 2 , r 3 ) ) ) d 2 r 3
ϵ m a g = ( i , j ) | | O C T F D T D ( i , j ) | | O C T M i e ( i , j ) | | 2 ( i , j ) | O C T M i e ( i , j ) | 2 ϵ p h = ( i , j ) | O C T F D T D ( i , j ) O C T M i e ( i , j ) | 2 ( i , j ) | O C T M i e ( i , j ) | 2

Metrics