Abstract

We report on large-area photoconductive terahertz (THz) emitters with a low-temperature-grown GaAs (LT-GaAs) active layer fabricated on quartz substrates using a lift-off transfer process. These devices are compared to the same LT-GaAs emitters when fabricated on the growth substrate. We find that the transferred devices show higher optical-to-THz conversion efficiencies and significantly larger breakdown fields, which we attribute to reduced parasitic current in the substrate. Through these improvements, we demonstrate a factor of ~8 increase in emitted THz field strength at the maximum operating voltage. In addition we find improved performance when these devices are used for photoconductive detection, which we explain through a combination of reduced parasitic substrate currents and reduced space-charge build-up in the device.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas

Tze-An Liu, Masahiko Tani, Makoto Nakajima, Masanori Hangyo, Kiyomi Sakai, Shin-ichi Nakashima, and Ci-Ling Pan
Opt. Express 12(13) 2954-2959 (2004)

High-power terahertz radiation emitter with a diamond photoconductive switch array

Hitoki Yoneda, Kazutatsu Tokuyama, Ken-ichi Ueda, Hironori Yamamoto, and Kazuhiro Baba
Appl. Opt. 40(36) 6733-6736 (2001)

Femtosecond response of a free-standing LT-GaAs photoconductive switch

Xuemei Zheng, Ying Xu, Roman Sobolewski, Roman Adam, Martin Mikulics, Michael Siegel, and Peter Kordoš
Appl. Opt. 42(9) 1726-1731 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
    [Crossref]
  2. Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
    [Crossref]
  3. A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
    [Crossref]
  4. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
    [Crossref]
  5. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
    [Crossref]
  6. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
    [Crossref]
  7. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
    [Crossref]
  8. K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds., Terahertz Spectroscopy: Theory and Applications (Springer, 2012).
  9. G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
    [Crossref]
  10. S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
    [Crossref]
  11. M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [Crossref]
  12. M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
    [Crossref]
  13. C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
    [Crossref] [PubMed]
  14. J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
    [Crossref]
  15. H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
    [Crossref]
  16. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
    [Crossref]
  17. R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
    [Crossref]
  18. X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
    [Crossref]
  19. A. Halpern, Schaum’s Outline Beginning Physics II (McGraw-Hill Companies Inc, 1998).
  20. L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” Electron Devices, IEEE Transactions on  60, 1619–1624 (2013).
    [Crossref]
  21. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings-IEEE 95, 1658 (2007).
    [Crossref]
  22. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
    [Crossref]
  23. J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
    [Crossref]
  24. E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
    [Crossref]
  25. Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
    [Crossref]
  26. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [Crossref]
  27. Y.-S. Lee, Principles of Terahertz Science and Technology, vol. 170 (Springer Science & Business Media, 2009).
  28. B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
    [Crossref]
  29. D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985 (1983).
    [Crossref]
  30. M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. i. homogeneous transport,” IEEE Transactions on Electron Devices 38, 634–649 (1991).
    [Crossref]
  31. M. Wellner, Elements of Physics (Springer Science & Business Media, 2012).
  32. R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
    [Crossref]
  33. J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
    [Crossref]
  34. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
    [Crossref]
  35. P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
    [Crossref]
  36. L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.
  37. O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
    [Crossref]
  38. M. Naftaly and R. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280, 291–295 (2007).
    [Crossref]

2015 (1)

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

2013 (2)

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” Electron Devices, IEEE Transactions on  60, 1619–1624 (2013).
[Crossref]

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

2010 (1)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

2008 (2)

O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
[Crossref]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

2007 (4)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings-IEEE 95, 1658 (2007).
[Crossref]

M. Naftaly and R. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280, 291–295 (2007).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

2005 (1)

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

2004 (1)

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

2003 (2)

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

2000 (2)

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

1997 (3)

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[Crossref]

M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
[Crossref]

1996 (2)

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
[Crossref]

1995 (1)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

1994 (1)

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

1992 (1)

S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
[Crossref]

1991 (2)

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. i. homogeneous transport,” IEEE Transactions on Electron Devices 38, 634–649 (1991).
[Crossref]

1990 (3)

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

1983 (1)

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985 (1983).
[Crossref]

1982 (1)

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

1980 (1)

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

1965 (1)

R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
[Crossref]

Adam, R.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Alexander, P.

O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
[Crossref]

Aspnes, D.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985 (1983).
[Crossref]

Auston, D.

B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
[Crossref]

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

Baker, C.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Bean, J.

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

Beere, H.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Bikorimana, S.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

Blakemore, J.

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

Burnett, A. D.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Büttner, R.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

Carlson, R.

R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
[Crossref]

Cunningham, J.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Cunningham, J. E.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Davies, A.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Davies, A. G.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Dekorsy, T.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

Dorsinville, R.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

Evans, M.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Fan, W.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Fattinger, C.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

Fischer, B. M.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
[Crossref]

Fischetti, M. V.

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. i. homogeneous transport,” IEEE Transactions on Electron Devices 38, 634–649 (1991).
[Crossref]

Florez, L.

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Gladden, L. F.

O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
[Crossref]

Gmitter, T.

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Gregory, I.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Grischkowsky, D.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

Gupta, S.

S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
[Crossref]

Halpern, A.

A. Halpern, Schaum’s Outline Beginning Physics II (McGraw-Hill Companies Inc, 1998).

Harbison, J.

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Heiliger, H.-M.

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Helm, H.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
[Crossref]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

Hey, R.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Hirsch, O.

O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
[Crossref]

Hou, L.

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” Electron Devices, IEEE Transactions on  60, 1619–1624 (2013).
[Crossref]

Hu, B.

B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
[Crossref]

Hunter, I.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Hwang, D.

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Jacobsen, R. H.

P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
[Crossref]

Jepsen, P. U.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
[Crossref]

P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
[Crossref]

Johnson, A.

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

Katzenellenbogen, N.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

Keiding, S.

P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
[Crossref]

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

Kordoš, P.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Lee, K.-S.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology, vol. 170 (Springer Science & Business Media, 2009).

Li, L.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

Linfield, E.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Linfield, E. H.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Liu, Y.

L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.

Luo, J.

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Matsuura, S.

Melloch, M.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

Mikulics, M.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Miles, R.

M. Naftaly and R. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280, 291–295 (2007).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings-IEEE 95, 1658 (2007).
[Crossref]

Mimura, H.

M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
[Crossref]

Morgan, D.

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Mourou, G.

S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
[Crossref]

Naftaly, M.

M. Naftaly and R. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280, 291–295 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings-IEEE 95, 1658 (2007).
[Crossref]

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

Nakashima, S.-i.

Otsuka, N.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Ríos, R. D. V.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

Rogalski, A.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

Roskos, H.

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Russell, C.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

Sakai, K.

M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[Crossref]

Segschneider, G.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

Seo, S.-W.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

Shen, Y.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Shi, W.

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” Electron Devices, IEEE Transactions on  60, 1619–1624 (2013).
[Crossref]

Siegel, M.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Silverman, S.

R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
[Crossref]

Sizov, F.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

Slack, G.

R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
[Crossref]

Smith, P.

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

Sobolewski, R.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Studna, A.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985 (1983).
[Crossref]

Tani, M.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[Crossref]

M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
[Crossref]

Thomas, H.

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Tribe, W.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Ummy, M. A.

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

Upadhya, P.

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Van Exter, M.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

Vossebürger, M.

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

Wang, L.

L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.

Wang, Y.

L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.

Warren, A.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

Wellner, M.

M. Wellner, Elements of Physics (Springer Science & Business Media, 2012).

Westwood, D.

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Whitaker, J. F.

S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
[Crossref]

Williams, R.

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Wood, C.

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Wood, C. D.

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

Woodall, J.

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

Wu, Q.

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

Xu, Y.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Zhang, X.-C.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
[Crossref]

Zhao, Z.

L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.

Zheng, X.

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Appl. Opt. (1)

Appl. optics (1)

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordoš, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. optics 42, 1726–1731 (2003).
[Crossref]

Appl. Phys. Lett. (13)

J. Cunningham, C. Wood, A. Davies, I. Hunter, E. Linfield, and H. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

H.-M. Heiliger, M. Vossebürger, H. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 2903–2905 (1996).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91, 181124 (2007).
[Crossref]

E. Yablonovitch, D. Hwang, T. Gmitter, L. Florez, and J. Harbison, “Van der waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

B. Hu, X.-C. Zhang, and D. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629–2631 (1990).
[Crossref]

D. Auston, A. Johnson, P. Smith, and J. Bean, “Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[Crossref]

Y. Shen, P. Upadhya, H. Beere, E. Linfield, A. Davies, I. Gregory, C. Baker, W. Tribe, and M. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

A. Warren, N. Katzenellenbogen, D. Grischkowsky, J. Woodall, M. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs: As epilayers,” Appl. Phys. Lett. 58, 1512–1514 (1991).
[Crossref]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µ m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[Crossref]

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[Crossref]

Electron Devices, IEEE Transactions (1)

L. Hou and W. Shi, “An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” Electron Devices, IEEE Transactions on  60, 1619–1624 (2013).
[Crossref]

IEEE Transactions on Electron Devices (1)

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. i. homogeneous transport,” IEEE Transactions on Electron Devices 38, 634–649 (1991).
[Crossref]

J. Appl. Phys. (2)

R. Carlson, G. Slack, and S. Silverman, “Thermal conductivity of GaAs and GaAs1- xpx laser semiconductors,” J. Appl. Phys. 36, 505–507 (1965).
[Crossref]

J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181 (1982).
[Crossref]

J. Opt. (1)

R. D. V. Ríos, S. Bikorimana, M. A. Ummy, R. Dorsinville, and S.-W. Seo, “A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection,” J. Opt. 17, 125802 (2015).
[Crossref]

JOSA B (2)

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
[Crossref]

P. U. Jepsen, R. H. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13, 2424–2436 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Tani, K. Sakai, and H. Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys. 36, L1175 (1997).
[Crossref]

Lab on a Chip (1)

C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “Spectroscopy of polycrystalline materials using thinned-substrate planar goubau line at cryogenic temperatures,” Lab on a Chip 13, 4065–4070 (2013).
[Crossref] [PubMed]

Mater. Today (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Microelectron. J. (1)

O. Hirsch, P. Alexander, and L. F. Gladden, “Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements,” Microelectron. J. 39, 841–848 (2008).
[Crossref]

Opt. Commun. (1)

M. Naftaly and R. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280, 291–295 (2007).
[Crossref]

Phys. Rev. B (1)

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985 (1983).
[Crossref]

Proc. IEEE (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007).
[Crossref]

Proceedings-IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings-IEEE 95, 1658 (2007).
[Crossref]

Prog. Quantum Electron. (1)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

Quantum Electron. IEEE J. (1)

S. Gupta, J. F. Whitaker, and G. Mourou, “Ultrafast carrier dynamics in iii–v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” Quantum Electron. IEEE J. 28, 2464–2472 (1992).
[Crossref]

Semicond. Sci. Technol. (1)

J. Luo, H. Thomas, D. Morgan, D. Westwood, and R. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199 (1994).
[Crossref]

Other (5)

Y.-S. Lee, Principles of Terahertz Science and Technology, vol. 170 (Springer Science & Business Media, 2009).

A. Halpern, Schaum’s Outline Beginning Physics II (McGraw-Hill Companies Inc, 1998).

L. Wang, Y. Liu, Y. Wang, and Z. Zhao, “A method for removing echoes in the terahertz time-domain spectroscopy system,” in “Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on,” vol. 2 (IEEE, 2012), pp. 1–4.

M. Wellner, Elements of Physics (Springer Science & Business Media, 2012).

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds., Terahertz Spectroscopy: Theory and Applications (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A photoconductive device generating terahertz radiation in reflection (towards reader) and transmission (away from reader) geometries.
Fig. 2
Fig. 2 (Reflection) The ultrafast terahertz time-domain pulses of LT-GaAs on quartz (LoQ) (black) and on SI-GaAs (LoG) (red). The inset shows the IV from each device measured with average optical power of 200 mW. The current for the LoQ device has been multiplied by 100.
Fig. 3
Fig. 3 (Reflection) Shows the peak-to-peak value of the THz field, extracted from the time-domain signals, as a function of applied field. The inset shows the variation of peak-to-peak output amplitude with incident optical power. In both cases, the black curve represents the LoQ device and the red curve represents the LoG device
Fig. 4
Fig. 4 (Transmission) Main figure shows the variation of peak-to-peak THz field with applied field. The inset shows time-domain pulses for both emitters under the same bias conditions. In both cases, the black curve represents the LoQ device on a 500-µm-thick quartz substrate, and the red curve is that of the LoG
Fig. 5
Fig. 5 Detected photo-current as a function of (a): the average optical excitation power focused on the detector and (b): the field applied to the emitter. (c): Detected time-domain signals from both devices. (d): Simulation results of time-domain traces for both detectors. The orange curve shows the contribution from the SI-GaAs substrate. In all instances, the LoQ detector is represented by the black line, while that on Si-GaAs in the red line.
Fig. 6
Fig. 6 Normalised time-domain trace using LoG emitter with 150-µm-thick GaP electrooptic detection crystal (red line) and LT-GaAs on a 2-mm-thick quartz substrate as emitter and detector (black line). In both instances a 5 kV cm−1 bias and 500 mW average optical power were applied to the emitter. Inset: FFT of the same data, normalised to the noise level and calculated with a time window of 35 ps, i.e. truncated before the quartz substrate reflection

Tables (2)

Tables Icon

Table 1 Typical values of resistance for the three types of devices discussed in the text. The values have been extracted from fitting IV curves for each device. Conditions ‘light’ (and ‘dark’) refer to the presence (absence) of an optical beam (20 mW average power), focused onto the emitter and aligned to minimise resistance.

Tables Icon

Table 2 Parameter values used to simulate the measured signal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d P sc 1 d t = P sc 1 τ r 1 + n f 1 e v 1
d v 1 d t = v 1 τ s 1 + e m * ( E bias ( t ) P sc 1 + P sc 2 η ϵ 0 ϵ r )
d n f 1 d t = n f 1 τ c 1 + α G ( t )
d P sc 2 d t = P sc 2 τ r 2 + n f 1 e v 2
d v 2 d t = v 2 τ s 2 + e m * ( E bias ( t ) P sc 1 + P sc 2 η ϵ 0 ϵ r )
d n f 2 d t = n f 2 τ c 2 + ( 1 α ) G ( t )
E bias = E THz sin ( ω P ( t t 0 ) ) sech ( 1.76 ( t t 0 ) t p )

Metrics