Abstract

Terahertz frequency-wavelet deconvolution is utilized specifically for the stratigraphic and subsurface investigation of art paintings with terahertz reflective imaging. In order to resolve the optically thin paint layers, a deconvolution technique is enhanced by the combination of frequency-domain filtering and stationary wavelet shrinkage, and applied to investigate a mid-20th century Italian oil painting on paperboard, After Fishing, by Ausonio Tanda. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed, demonstrating that terahertz frequency-wavelet deconvolution can be an effective tool to characterize stratified systems with optically thin layers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

Corinna L. Koch-Dandolo, Troels Filtenborg, Kaori Fukunaga, Jacob Skou-Hansen, and Peter Uhd Jepsen
Appl. Opt. 54(16) 5123-5129 (2015)

TeraHertz imaging of hidden paint layers on canvas

Aurèle J. L. Adam, Paul C. M. Planken, Sabrina Meloni, and Joris Dik
Opt. Express 17(5) 3407-3416 (2009)

Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting

Anton S. Skryl, J. Bianca Jackson, Michael I. Bakunov, Michel Menu, and Gerard A. Mourou
Appl. Opt. 53(6) 1033-1038 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
    [Crossref]
  2. K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
    [Crossref] [PubMed]
  3. M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
    [Crossref]
  4. J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
    [Crossref]
  5. J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
    [Crossref]
  6. J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
    [Crossref]
  7. L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
    [Crossref] [PubMed]
  8. J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
    [Crossref]
  9. C. Seco-Martorell, V. López-Dominguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, and J. Tejada, “Goya’s artwork imaging with Terahertz waves,” Opt. Express 21, 17800–17805 (2013).
    [Crossref] [PubMed]
  10. C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
    [Crossref] [PubMed]
  11. C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
    [Crossref]
  12. C. L. Koch-Dandolo and P. U. Jepsen, “Wall painting investigation by means of non-invasive terahertz time-domain imaging (THz-TDI): Inspection of subsurface structures buried in historical plasters,” J. Infrared Millim. Te. 37, 198–208 (2016).
    [Crossref]
  13. K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
    [Crossref]
  14. M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
    [Crossref]
  15. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “Terahertz imaging of hidden paint layers on canvas,” Opt. Express 17, 3407–3416 (2009).
    [Crossref] [PubMed]
  16. G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
    [Crossref] [PubMed]
  17. Y. Chen, S. Huang, and E. Pickwell-MacPherson, “Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy,” Opt. Express 18, 1177–1190 (2010).
    [Crossref] [PubMed]
  18. J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
    [Crossref]
  19. R. K. H. Galvão, S. Hadjiloucas, A. Zafiropoulos, G. C. Walker, J. W. Bowen, and R. Dudley, “Optimization of apodization functions in terahertz transient spectrometry,” Opt. Lett. 32, 3008–3010 (2007).
    [Crossref] [PubMed]
  20. J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
    [Crossref]
  21. J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
    [Crossref]
  22. M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
    [Crossref]

2016 (3)

C. L. Koch-Dandolo and P. U. Jepsen, “Wall painting investigation by means of non-invasive terahertz time-domain imaging (THz-TDI): Inspection of subsurface structures buried in historical plasters,” J. Infrared Millim. Te. 37, 198–208 (2016).
[Crossref]

K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
[Crossref]

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

2015 (7)

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
[Crossref]

M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

2013 (1)

2012 (2)

G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
[Crossref] [PubMed]

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

2011 (2)

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

2010 (2)

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

Y. Chen, S. Huang, and E. Pickwell-MacPherson, “Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy,” Opt. Express 18, 1177–1190 (2010).
[Crossref] [PubMed]

2009 (2)

A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “Terahertz imaging of hidden paint layers on canvas,” Opt. Express 17, 3407–3416 (2009).
[Crossref] [PubMed]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

2007 (2)

1998 (1)

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Abraham, E.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Adam, A. J. L.

Arauz-Garofalo, G.

Bailleul-Lesuer, R.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

Bessou, M.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Bitzer, A.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Bowen, J.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

Bowen, J. W.

Busch, S. F.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Castro-Camus, E.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Caumes, J.-P.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Chamberlain, J. M.

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

Chassagne, B.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Chen, Y.

Citrin, D. S.

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
[Crossref]

D’Alessandro, L.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

Dai, D.

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

Dautant, A.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Declercq, N. F.

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

Dik, J.

Dong, J.

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
[Crossref]

Duday, H.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Dudley, R.

Duling, I. N.

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Feldmann, J.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Filtenborg, T.

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

Fischer, B. M.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Fletcher, J. R.

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

Fromm, J.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Fukunaga, K.

K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
[Crossref]

M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
[Crossref]

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

Galvão, R. K. H.

Hadjiloucas, S.

Huang, S.

Hunsche, S.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Ikari, T.

K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
[Crossref]

Iwai, K.

K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
[Crossref]

Jackson, J. B.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
[Crossref] [PubMed]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Jepsen, P. U.

C. L. Koch-Dandolo and P. U. Jepsen, “Wall painting investigation by means of non-invasive terahertz time-domain imaging (THz-TDI): Inspection of subsurface structures buried in historical plasters,” J. Infrared Millim. Te. 37, 198–208 (2016).
[Crossref]

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

Koch, M.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Koch-Dandolo, C. L.

C. L. Koch-Dandolo and P. U. Jepsen, “Wall painting investigation by means of non-invasive terahertz time-domain imaging (THz-TDI): Inspection of subsurface structures buried in historical plasters,” J. Infrared Millim. Te. 37, 198–208 (2016).
[Crossref]

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

Krügener, K.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Labaune, J.

M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
[Crossref]

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
[Crossref] [PubMed]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Lavier, C.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Locquet, A.

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
[Crossref]

López-Dominguez, V.

Meloni, S.

Menu, M.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
[Crossref] [PubMed]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Mourou, G.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express 20, 27230–27241 (2012).
[Crossref] [PubMed]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

Mourou, G. A.

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Mourou, M.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Nuss, M. C.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Öhrström, L.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Pagès-Camagna, S.

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

Palacios, J.

Pickwell-MacPherson, E.

Picollo, M.

M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
[Crossref]

Planken, P. C. M.

Redo-Sanchez, A.

Roberts, J.

Rühli, F.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Salort, S.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Schumacher, P.

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Schwerdtfeger, M.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Seco-Martorell, C.

Skou-Hansen, J.

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).
[Crossref] [PubMed]

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

Soltani, A.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Swift, G. P.

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

Tejada, J.

Upadhya, P. C.

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

Viöl, W.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

Walker, G.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

Walker, G. C.

Wallauer, J.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Walther, M.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Whitaker, J. F.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

White, J.

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

Whyte, A.

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

Williamson, S. L.

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Zafiropoulos, A.

Ziéglé, A.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (4)

C. L. Koch-Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A 121, 981–986 (2015).
[Crossref]

J. Labaune, J. B. Jackson, K. Fukunaga, J. White, L. D’Alessandro, A. Whyte, M. Menu, and G. Mourou, “Investigation of Terra Cotta artefacts with terahertz,” Appl. Phys. A 105, 5–9 (2011).
[Crossref]

J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou, “Papyrus imaging with terahertz time domain spectroscopy,” Appl. Phys. A 100, 607–612 (2010).
[Crossref]

K. Fukunaga, T. Ikari, and K. Iwai, “THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso,” Appl. Phys. A 122, 106 (2016).
[Crossref]

Compos. Part B Eng. (1)

J. Dong, A. Locquet, N. F. Declercq, and D. S. Citrin, “Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact,” Compos. Part B Eng. 92, 167–174 (2016).
[Crossref]

Frontiers of Optoelectronics (1)

J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Frontiers of Optoelectronics 8, 81–92 (2015).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol. 1, 220–231 (2011).
[Crossref]

J. Appl. Phys. (1)

J. R. Fletcher, G. P. Swift, D. Dai, J. M. Chamberlain, and P. C. Upadhya, “Pulsed terahertz signal reconstruction,” J. Appl. Phys. 102, 113105 (2007).
[Crossref]

J. Cultural Heritage (1)

M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cultural Heritage 16, 73–80 (2015).
[Crossref]

J. Infrared Millim. Te. (2)

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with Wavelet De-noising,” J. Infrared Millim. Te. 37, 289–301 (2015).
[Crossref]

C. L. Koch-Dandolo and P. U. Jepsen, “Wall painting investigation by means of non-invasive terahertz time-domain imaging (THz-TDI): Inspection of subsurface structures buried in historical plasters,” J. Infrared Millim. Te. 37, 198–208 (2016).
[Crossref]

Meas. Sci. Technol. (1)

J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou, “Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications,” Meas. Sci. Technol. 20, 075502 (2009).
[Crossref]

Opt. Commun. (1)

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref] [PubMed]

The Anatomical Record (1)

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat,” The Anatomical Record 298, 1135–1143 (2015).
[Crossref] [PubMed]

Wood Sci. Technol. (1)

M. Koch, S. Hunsche, P. Schumacher, M. C. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Images of After Fishing by Ausonio Tanda. (a) Visible photograph of After Fishing, and (b) X-ray transmission image of After Fishing. After Fishing is not copyrighted. Marcello Melis is the owner of After Fishing.

Fig. 2
Fig. 2

Hanning window function with typical values, t0=10 ps and fc=4 THz, in the time domain and its Fourier transform (power spectrum) in the inset.

Fig. 3
Fig. 3

THz frequency-wavelet deconvolution result for a typical THz waveform. (a) Original THz reflected waveform from one typical pixel; (b) deconvolution result with fc=2 THz; (c) deconvolution result with fc= 3 THz; (d) final deconvolution result to reveal the stratigraphy in this typical pixel. The insets in (b) and (c) show the zoom-in of the signals around the time scales of interest.

Fig. 4
Fig. 4

THz reference signal with its frequency spectrum in the inset.

Fig. 5
Fig. 5

THz C-scan image in time domain based on the raw data. The contrast mechanism chosen is the maximum peak amplitude in the reflected signal.

Fig. 6
Fig. 6

THz C-scan images based on the raw data in frequency domain at (a) 0.4, (b) 0.6, (c) 0.8, and (d) 1.2 THz. The contrast mechanism chosen is based on the spectral power density at the corresponding frequency, then the contrast is normalized to one in order to make a clear comparison. A few small and blurred spots are highlighted with red dotted circles.

Fig. 7
Fig. 7

THz imaging results of the ‘Spots’ location in the paperboard based on the raw data. (a) The THz C-scan based on the peak signal value between 12 and 28 ps shows the location of the spots in the plane of the painting. (b) The THz B-scan with the cross-section Y=176 shows the location of the spots in depth.

Fig. 8
Fig. 8

Four different types of the deconvolved signals. (a) Type I: signal with a small peak occurring before the arrival of the main peak due to diffuse reflection; (b) Type II: signal with one featured peak indicating the existence of an addition layer with refractive index larger than that of the surface pigments; (c) Type III: signal with one featured peak indicating the existence of an additional layer with refractive index smaller than that of the surface pigments; (d) Type IV: signals with no additional peak identified.

Fig. 9
Fig. 9

THz C-scans based on the Type I signal and the main peak indicating the surface feature of the painting. (a) The THz C-scan based on the amplitude of the peak arriving before the main peak; (b) The THz C-scan based on the amplitude of the main peak corresponding to the air/paint interface.

Fig. 10
Fig. 10

THz C-scans based on the Type II and III signals indicating the existence of the underlying layer. (a) The THz C-scan based on the absolute value of the peak with positive sign; (b) The THz C-scan based on the absolute value of the peak with negative sign.

Fig. 11
Fig. 11

Comparison between THz B-scans based on the raw data and binary THz B-scans based on the deconvolved data. (a) The THz B-scan based on the raw data with ‘Cross Section 1’ in Fig. 10(b); (b) The binary THz B-scan based on the deconvolved data with ‘Cross Section 1’ in Fig. 10(b); (c) The THz B-scan based on the raw data with ‘Cross Section 2’ in Fig. 10(a); (d) The binary THz B-scan based on the deconvolved data with ‘Cross Section 2’ in Fig. 10(a).

Fig. 12
Fig. 12

Normalized THz image of the optical thickness distribution based on the deconvolved signals, which can provide a rough estimate of the physical thickness distribution of the applied paint layers.

Fig. 13
Fig. 13

Raking light image of After Fishing.

Fig. 14
Fig. 14

The fused image of the X-ray image in red and THz thickness distribution image in green to distinguish the areas of similar intensity in yellow.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = i ( t ) h ( t ) .
h ( t ) = FFT 1 [ FFT ( r ( t ) ) FFT ( i ( t ) ) ] ,
h ( t ) = FFT 1 [ FFT ( f ( t ) ) × FFT ( r ( t ) ) F F R ( i ( t ) ) ] ,
h ( t ) = f ( t ) h ( t ) ;
F ( ω ) = { e i ω t 0 cos 2 ( ω 4 f c ) | ω | 2 π f c , 0 | ω | > 2 π f c ,

Metrics