Abstract

An original technique that combines digital holography, dual illumination of the sample and cleaning algorithm 3D reconstruction is proposed. It uses a standard transmission microscopy setup coupled with a digital holography detection. The technique is 4D, since it allows to determine, at each time step, the 3D locations (x,y,z) of many moving objects that scatter the dual illumination beam. The technique has been validated by imaging the microcirculation of blood in a fish larvae sample (the moving objects are thus red blood cells RBCs). Videos showing in 4D the moving RBCs superimposed with the perfused blood vessels are obtained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy

Yong-Seok Choi and Sang-Joon Lee
Appl. Opt. 48(16) 2983-2990 (2009)

Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy

Shuoqi Ye, Ran Yang, Jingwei Xiong, K. Kirk Shung, Qifa Zhou, Changhui Li, and Qiushi Ren
Biomed. Opt. Express 3(2) 360-365 (2012)

Laser Doppler holographic microscopy in transmission: application to fish embryo imaging

Nicolas Verrier, Daniel Alexandre, and Michel Gross
Opt. Express 22(8) 9368-9379 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
    [Crossref] [PubMed]
  2. M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
    [Crossref] [PubMed]
  3. J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
    [Crossref] [PubMed]
  4. O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).
  5. I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
    [Crossref]
  6. Y. Yeh and H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
    [Crossref]
  7. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [Crossref] [PubMed]
  8. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” An. Biomedical Engineering 40, 367–377 (2012).
    [Crossref]
  9. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
    [Crossref] [PubMed]
  10. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
    [Crossref] [PubMed]
  11. Y. Zeng, M. Wang, G. Feng, X. Liang, and G. Yang, “Laser speckle imaging based on intensity fluctuation modulation,” Opt. Lett. 38, 1313–1315 (2013).
    [Crossref] [PubMed]
  12. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  13. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
    [Crossref]
  14. U. Schnars and W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref] [PubMed]
  15. M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. lett. 33, 500–502 (2008).
    [Crossref] [PubMed]
  16. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [Crossref] [PubMed]
  17. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [Crossref] [PubMed]
  18. J. Gao, J. A. Lyon, D. P. Szeto, and J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3, 2623–2635 (2012).
    [Crossref] [PubMed]
  19. N. Verrier, D. Alexandre, and M. Gross, “Laser doppler holographic microscopy in transmission: application to fish embryo imaging,” Opt. Express 22, 9368–9379 (2014).
    [Crossref] [PubMed]
  20. F. Saglimbeni, S. Bianchi, A. Lepore, and R. Di Leonardo, “Three-axis digital holographic microscopy for high speed volumetric imaging,” Opt. Express 22, 13710–13718 (2014).
    [Crossref] [PubMed]
  21. J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astronomy and Astrophysics Supplement Series 15, 417 (1974).
  22. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
    [Crossref]
  23. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).
    [Crossref]
  24. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [Crossref]
  25. M. Westerfield, “The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio)” (Institute of Neuroscience. University of Oregon, 1995).
  26. S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
    [Crossref] [PubMed]
  27. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [Crossref] [PubMed]
  28. F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011).
    [Crossref]
  29. N. Verrier, D. Alexandre, G. Tessier, and M. Gross, “Holographic microscopy reconstruction in both object and image half-spaces with an undistorted three-dimensional grid,” Appl. Opt. 54, 4672–4677 (2015).
    [Crossref] [PubMed]
  30. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  31. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. lett. 30, 2092–2094 (2005).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (2)

Y. Zeng, M. Wang, G. Feng, X. Liang, and G. Yang, “Laser speckle imaging based on intensity fluctuation modulation,” Opt. Lett. 38, 1313–1315 (2013).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

2012 (4)

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
[Crossref] [PubMed]

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” An. Biomedical Engineering 40, 367–377 (2012).
[Crossref]

J. Gao, J. A. Lyon, D. P. Szeto, and J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3, 2623–2635 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2008 (1)

2007 (3)

2005 (2)

2001 (1)

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
[Crossref] [PubMed]

2000 (2)

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

1995 (1)

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

1994 (1)

1987 (1)

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

1978 (1)

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

1974 (1)

J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astronomy and Astrophysics Supplement Series 15, 417 (1974).

1964 (1)

Y. Yeh and H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

1962 (1)

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Abboud, M.

Absil, É.

Alexandre, D.

Atlan, M.

Bianchi, S.

Boas, D. A.

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Brown, J.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Bun, P.

Carbin, G. L.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Chan-Ling, T.

J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
[Crossref] [PubMed]

Chen, J.

Cheong, F. C.

Collot, L.

Coppey-Moisan, M.

Cuche, E.

Cummins, H.

Y. Yeh and H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Denis, L.

Depeursinge, C.

Desbiolles, P.

Devor, A.

Di Leonardo, R.

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Dunn, A. K.

Egan, K.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Feng, G.

Fournier, C.

Friedman, E.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Gao, J.

Goepfert, C.

Gragoudas, E.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Grier, D. G.

Grima, N. A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Gross, M.

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Högbom, J.

J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astronomy and Astrophysics Supplement Series 15, 417 (1974).

Horiguchi, M.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
[Crossref] [PubMed]

Iida, H.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Inugami, A.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Isogai, S.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
[Crossref] [PubMed]

Jehle, J.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Joud, F.

Jüptner, W.

Kanno, I.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Kennedy, C.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Kim, M. K.

Kim, S.-H.

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Krishnatreya, B. J.

Krupsky, S.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Kur, J.

J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
[Crossref] [PubMed]

Lane, A.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Le Clerc, F.

Lee, S.-H.

Leith, E. N.

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[Crossref]

Lepore, A.

Liang, X.

Lyon, J. A.

Marquet, P.

Miura, S.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Murakami, M.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Newman, E. A.

J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
[Crossref] [PubMed]

Oak, S.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Pase, M. P.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Pipingas, A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Roichman, Y.

Saglimbeni, F.

Sakurada, O.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Sasaki, H.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Schnars, U.

Scholey, A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Shishido, F.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Sokoloff, L.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

Soulez, F.

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Stough, C. K.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Szeto, D. P.

Takahashi, K.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Tessier, G.

Thiébaut, E.

Thiébaut, É.

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

Uemura, K.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

Upatnieks, J.

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[Crossref]

van Blaaderen, A.

van Oostrum, P.

Verpillat, F.

Verrier, N.

Wang, M.

Warnasooriya, N.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

Weinstein, B. M.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
[Crossref] [PubMed]

Westerfield, M.

M. Westerfield, “The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio)” (Institute of Neuroscience. University of Oregon, 1995).

Yang, G.

Yang, S.-M.

Yeh, Y.

Y. Yeh and H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Yi, G.-R.

Yu, L.

Yuan, S.

Zeng, Y.

Am. J. Physiology-Heart and Circulatory Physiology (1)

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, and L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiology-Heart and Circulatory Physiology 234, H59–H66 (1978).

An. Biomedical Engineering (1)

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” An. Biomedical Engineering 40, 367–377 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Yeh and H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Astronomy and Astrophysics Supplement Series (1)

J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astronomy and Astrophysics Supplement Series 15, 417 (1974).

Biomed. Opt. Express (1)

Developmental biology (1)

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental biology 230, 278–301 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[Crossref] [PubMed]

J. Cerebral Blood Flow & Metabolism (1)

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, and K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J. Cerebral Blood Flow & Metabolism 7, 143–153 (1987).
[Crossref]

J. Opt. Soc. Am. A (3)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Ophthalmology (1)

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, and E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Progress in retinal and eye research (1)

J. Kur, E. A. Newman, and T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Progress in retinal and eye research 31,377–406 (2012).
[Crossref] [PubMed]

Stroke (1)

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, and A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[Crossref] [PubMed]

Other (1)

M. Westerfield, “The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio)” (Institute of Neuroscience. University of Oregon, 1995).

Supplementary Material (9)

NameDescription
» Visualization 1: MP4 (8148 KB)      Visualization 1
» Visualization 2: MP4 (589 KB)      Visualization 2
» Visualization 3: MP4 (705 KB)      Visualization 3
» Visualization 4: MP4 (70 KB)      Visualization 4
» Visualization 5: MP4 (3687 KB)      Visualization 5
» Visualization 6: MP4 (13598 KB)      Visualization 6
» Visualization 7: MP4 (1362 KB)      Visualization 7
» Visualization 8: MP4 (130 KB)      Visualization 8
» Visualization 9: MP4 (776 KB)      Visualization 9

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Heterodyne digital holographic microscopy experimental arrangement. AOM1, AOM2: acousto-optic modulators (Bragg cells) that shift the frequency of the local oscillator beam; MO: microscope objective; M: mirror; BS: angularly tilted cube beam splitter. E and ELO: signal and reference complex fields.
Fig. 2
Fig. 2 (a, b) Zoom of the upper right hand corner of the intensity images | H ˜ 4 φ ( k x , k y ) | 2 obtained with 4-phase holograms by reconstructing the MO pupil plane. (c) Fourier space hologram obtained after translation of the selected zone in the center of the calculation grid. The purple and green zones correspond to the holograms related to each illumination direction. The sample is a ground glass (a) or zebrafish sample (b,c).
Fig. 3
Fig. 3 Reconstructed intensity image of RBCs made with the 2-phase hologram H2φ,m (see Eq. (4)) where the time index is m = 77. The purple and green components Hpurple,m(x,y,z) and Hgreen,m(x,y,z) of the images were obtained by selecting the purple and the green zones of Fig. 2(c). Reconstruction was made with z = 26.7 (a), z = 0 (b) and z = +26.7 μm (c). The displayed images (a..c) correspond to image 77 of file Visualization 1, Visualization 2 and Visualization 3. Dorsal side left, anterior to the top. Bar is 100 μm.
Fig. 4
Fig. 4 Averaged intensity reconstructed images made with 2 phases holograms: H2φ,m = Im − Im−1 and with ω1 = ω2. The purple and green components 〈|Hpurple(x,y,z)|2〉 and 〈|Hgreen(x,y,z)|2〉 are calculated with Eq. (8). Reconstruction was made with z = 0 (a), z = +26.7 (b) and z = +53.5 μm (c). The displayed images correspond to image 51 (a), 76 (b) and 101 (c) of file Visualization 4. Bar is 100 μm.
Fig. 5
Fig. 5 Scheme of the 3D reconstruction process by the cleaning algorithm. In (a) the product between the two 3D grids is calculated. This allows to select, in (b), the point of highest correlation x1;y1;z1. Thus, in (c), the point is stored in Spurple(x,y,z) and Sgreen(x,y,z) and erased from |Hpurple(x,y,z1)| and |Hgreen(x,y,z1)|. From this modified plane, in (d) the overall grid is recalculated. In (e) a new maximum correlation point x2;y2;z2 is found. Again, in (f), new sources are stored in the associated space of sources and set to zero in the plane z = z2 of the 3D grid. A new cycle will start and the operation will be repeated K times.
Fig. 6
Fig. 6 Results of the 3D reconstruction made without (a) and with (b) the cleaning algorithm. (a) cuts of 〈|Hpurple(x,y,z)|2〉 and 〈|Hgreen(x,y,z)|2〉 along the planes XY (upper-right image highlighted in blue), YZ (upper-left, red) and XZ (lower, yellow). (b) cuts of 〈|Spurple,θ|2〉 and 〈|Sgreen,θ|2〉 along the planes XY, YZ and XZ. In (a) and (b) the cuts correspond respectively to images 64 of the video file Visualization 5 and Visualization 6. The blue, red and yellow lines represent the relative positions of the planes XY, YZ and XZ.
Fig. 7
Fig. 7 Instantaneous projections |Spurple,θ|2 and |Sgreen,θ|2. The projections correspond to images 1, 32 and 46 of the video file Visualization 7, i.e. to time m = 1 and angle θ = 30° (a), m = 32 and θ = 0° (b), and m = 46 and θ = +15° (c). The display is made in arbitrary logarithmic scale: |Spurple,θ|2 is displayed in purple, |Sgreen,θ|2 in green. Bar is 100 μm.
Fig. 8
Fig. 8 Averaged projection 〈|Spurple,θ|2〉 and 〈|Sgreen,θ|2〉. The projections correspond to images: 1, 41 and 61 of the video file Visualization 8 i.e. to time m = 1 and angle θ = 40° (a), m = 1 and θ = 0° (b), and θ = +20° (c). The display is made in arbitrary logarithmic scale: 〈|Spurple,θ|2〉 is displayed in purple, 〉|Sgreen,θ|2〉 in green. Bar is 100 μm.
Fig. 9
Fig. 9 Averaged projections 〈|Spurple,θ|2〉 and 〈|Sgreen,θ|2〉 superimposed with the instantaneous projections |Spurple,θ|2 and |Sgreen,θ|2. The projections correspond to images 1, 32 and 46 of file Visualization 9, i.e. to time index m = 1 and projection angle θ = −30° (a), m = 32 and θ = 0° (b), m = 46 and θ = +15° (c). The display is made in arbitrary logarithmic scale: 〈|Spurple,θ|2〉 is displayed in purple, 〉|Sgreen,θ|2〉 in green. Bar is 100 μm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ω L O = ω I + ω 1 ω 2
ω L O = ω I + ω C A M / 4 H 4 φ = [ I 0 I 2 ] + j [ I 1 I 3 ]
H ˜ 4 φ ( k x , k y ) = FFT [ H 4 φ ( x , y ) e j k ( x 2 + y 2 ) / 2 d ]
ω L O = ω I H 2 φ = I 0 I 1
H ˜ 2 φ ( k x , k y ) = FFT [ e j k ( x 2 + y 2 ) / 2 d H 2 φ ( x , y ) ]
H purple ( x , y ) = FFT 1 H ˜ purple ( k x , k y ) H green ( x , y ) = FFT 1 H ˜ green ( k x , k y )
H purple ( x , y , z ) = FFT 1 e j ( k x 2 + k y 2 ) z / 2 k H ˜ purple ( k x , k y ) H green ( x , y , z ) = FFT 1 e j ( k x 2 + k y 2 ) z / 2 k H ˜ green ( k x , k y )
| H purple ( x , y , z ) | 2 = ( 1 / 128 ) m = 0 127 | H purple , m ( x , y , z ) | 2
| H green ( x , y , z ) | 2 = ( 1 / 128 ) m = 0 127 | H green , m ( x , y , z ) | 2
S purple ( x , y , z ) = k = 1 K S purple , k ( x , y , z ) S green ( x , y , z ) = k = 1 K S green , k ( x , y , z )
H purple ( x , y , z 1 ) = H purple , 1 ( x , y , z 1 ) + S purple , 1 ( x , y , z 1 ) H green ( x , y , z 1 ) = H green , 1 ( x , y , z 1 ) + S green , 1 ( x , y , z 1 )
H purple , 1 ( x , y , z 2 ) = H purple , 2 ( x , y , z 2 ) + S purple , 2 ( x , y , z 2 ) H green , 1 ( x , y , z 2 ) = H green , 2 ( x , y , z 2 ) + S green , 2 ( x , y , z 2 )
H purple , k 1 ( x , y , z k ) = H purple , k ( x , y , z k ) + S purple , k ( x , y , z k ) H green , k 1 ( x , y , z k ) = H green , k ( x , y , z 2 ) + S green , k ( x , y , z k )
| S purple , θ ( x , y , t m ) | 2 = z | S purple ( x cos θ + z sin θ , y , z , t m ) | 2 | S green , θ ( x , y , t m ) | 2 = z | S green ( x cos θ + z sin θ , y , z , t m ) | 2
| S purple , θ ( x , y ) | 2 = 1 122 m = 1 122 | S purple , θ ( x , y , t m ) | 2 | S green , θ ( x , y ) | 2 = 1 122 m = 1 122 | S green , θ ( x , y , t m ) | 2

Metrics