Abstract

We report a new method for multiple-image encryption in diffractive-imaging-based encryption (DIBE) scheme. The discrete cosine transformation (DCT) spectra of the primary images are extracted, compacted and then nonlinear-transformed before being sent to the DIBE, where they are encoded into a single intensity pattern. With the help of a suggested phase retrieval algorithm, the original images can be recovered with high quality. Furthermore, due to the introduction of the nonlinear operation, the proposal is demonstrated to be robust to the currently available cryptographic attacks. The proposal probes a new way for multiple-image encryption in DIBE, and its effectiveness and feasibility have been supported by numerical simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme

Yi Qin, Qiong Gong, and Zhipeng Wang
Opt. Express 22(18) 21790-21799 (2014)

Binary-tree encryption strategy for optical multiple-image encryption

Jiawang Yi and Guanzheng Tan
Appl. Opt. 55(20) 5280-5291 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
    [Crossref]
  2. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
    [Crossref]
  3. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
    [Crossref] [PubMed]
  4. S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
    [Crossref]
  5. A. Carnicer, I. Juvells, B. Javidi, and R. Martínez-Herrero, “Optical encryption in the longitudinal domain of focused fields,” Opt. Express 24(7), 6793–6801 (2016).
    [Crossref] [PubMed]
  6. W. Chen, “Optical multiple-image encryption using three-dimensional space,” IEEE Photonics J. 8(2), 6900608 (2016).
    [Crossref]
  7. L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
    [Crossref]
  8. W. Liu, Z. Liu, and S. Liu, “Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm,” Opt. Lett. 38(10), 1651–1653 (2013).
    [Crossref] [PubMed]
  9. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
    [Crossref] [PubMed]
  10. N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
    [Crossref]
  11. A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35(11), 1914–1916 (2010).
    [Crossref] [PubMed]
  12. N. Zhou, T. Dong, and J. Wu, “Novel image encryption algorithm based on multiple-parameter discrete fractional random transform,” Opt. Commun. 283(15), 3037–3042 (2010).
    [Crossref]
  13. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  14. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
    [Crossref] [PubMed]
  15. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
    [Crossref] [PubMed]
  16. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30(13), 1644–1646 (2005).
    [Crossref] [PubMed]
  17. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31(8), 1044–1046 (2006).
    [Crossref] [PubMed]
  18. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14(8), 3181–3186 (2006).
    [Crossref] [PubMed]
  19. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35(22), 3817–3819 (2010).
    [Crossref] [PubMed]
  20. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating,” Appl. Opt. 50(29), 5750–5757 (2011).
    [Crossref] [PubMed]
  21. W. Chen, X. Chen, A. Anand, and B. Javidi, “Optical encryption using multiple intensity samplings in the axial domain,” J. Opt. Soc. Am. A 30(5), 806–812 (2013).
    [Crossref] [PubMed]
  22. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on coherent diffractive imaging using multiple wavelengths,” Opt. Commun. 285(3), 225–228 (2012).
    [Crossref]
  23. Y. Qin, Z. Wang, and Q. Gong, “Diffractive-imaging-based optical image encryption with simplified decryption from single diffraction pattern,” Appl. Opt. 53(19), 4094–4099 (2014).
    [Crossref] [PubMed]
  24. Y. Qin, Q. Gong, and Z. Wang, “Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme,” Opt. Express 22(18), 21790–21799 (2014).
    [Crossref] [PubMed]
  25. Y. Qin, Z. Wang, Q. Pan, and Q. Gong, “Optical color-image encryption in the diffractive-imaging scheme,” Opt. Lasers Eng. 77, 191–202 (2016).
    [Crossref]
  26. T. Li and Y. Shi, “Security risk of diffractive-imaging-based optical cryptosystem,” Opt. Express 23(16), 21384–21391 (2015).
    [Crossref] [PubMed]
  27. A. Alfalou, C. Brosseau, and N. Abdallah, “Simultaneous compression and encryption of color video images,” Opt. Commun. 338, 371–379 (2015).
    [Crossref]
  28. A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19(24), 24023–24029 (2011).
    [Crossref] [PubMed]
  29. A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks,” Opt. Express 21(7), 8025–8043 (2013).
    [Crossref] [PubMed]

2016 (3)

A. Carnicer, I. Juvells, B. Javidi, and R. Martínez-Herrero, “Optical encryption in the longitudinal domain of focused fields,” Opt. Express 24(7), 6793–6801 (2016).
[Crossref] [PubMed]

W. Chen, “Optical multiple-image encryption using three-dimensional space,” IEEE Photonics J. 8(2), 6900608 (2016).
[Crossref]

Y. Qin, Z. Wang, Q. Pan, and Q. Gong, “Optical color-image encryption in the diffractive-imaging scheme,” Opt. Lasers Eng. 77, 191–202 (2016).
[Crossref]

2015 (3)

T. Li and Y. Shi, “Security risk of diffractive-imaging-based optical cryptosystem,” Opt. Express 23(16), 21384–21391 (2015).
[Crossref] [PubMed]

A. Alfalou, C. Brosseau, and N. Abdallah, “Simultaneous compression and encryption of color video images,” Opt. Commun. 338, 371–379 (2015).
[Crossref]

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

2014 (4)

2013 (4)

2012 (1)

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on coherent diffractive imaging using multiple wavelengths,” Opt. Commun. 285(3), 225–228 (2012).
[Crossref]

2011 (2)

2010 (4)

2009 (1)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

2006 (2)

2005 (1)

2004 (1)

2003 (1)

N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
[Crossref]

2000 (1)

1995 (1)

Abdallah, N.

Ahmad, M. A.

Alfalou, A.

Anand, A.

Arcos, S.

Brosseau, C.

Carnicer, A.

Chen, L.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Chen, W.

W. Chen, “Optical multiple-image encryption using three-dimensional space,” IEEE Photonics J. 8(2), 6900608 (2016).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen, X. Chen, A. Anand, and B. Javidi, “Optical encryption using multiple intensity samplings in the axial domain,” J. Opt. Soc. Am. A 30(5), 806–812 (2013).
[Crossref] [PubMed]

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on coherent diffractive imaging using multiple wavelengths,” Opt. Commun. 285(3), 225–228 (2012).
[Crossref]

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating,” Appl. Opt. 50(29), 5750–5757 (2011).
[Crossref] [PubMed]

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35(22), 3817–3819 (2010).
[Crossref] [PubMed]

Chen, X.

Dong, T.

N. Zhou, T. Dong, and J. Wu, “Novel image encryption algorithm based on multiple-parameter discrete fractional random transform,” Opt. Commun. 283(15), 3037–3042 (2010).
[Crossref]

Gao, Q.

Ge, F.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Gong, Q.

Gopinathan, U.

Guo, C.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Guo, Q.

Javidi, B.

Joseph, J.

N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
[Crossref]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

Jridi, M.

Juvells, I.

Li, H.

Li, T.

Liu, J.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Liu, S.

Liu, W.

Liu, Z.

Mao, H.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Martínez-Herrero, R.

Monaghan, D. S.

Montes-Usategui, M.

Naughton, T. J.

Nishchal, N. K.

N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
[Crossref]

Pan, Q.

Y. Qin, Z. Wang, Q. Pan, and Q. Gong, “Optical color-image encryption in the diffractive-imaging scheme,” Opt. Lasers Eng. 77, 191–202 (2016).
[Crossref]

Peng, X.

Qin, Y.

Refregier, P.

Sheppard, C. J. R.

Sheridan, J. T.

Shi, Y.

Singh, K.

N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
[Crossref]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

Situ, G.

Unnikrishnan, G.

Wang, Y.

Wang, Z.

Wei, H.

Wen, J.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Wu, J.

N. Zhou, T. Dong, and J. Wu, “Novel image encryption algorithm based on multiple-parameter discrete fractional random transform,” Opt. Commun. 283(15), 3037–3042 (2010).
[Crossref]

Xu, L.

Yu, B.

Zhang, J.

Zhang, P.

Zhang, S.

Zhao, D.

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

Zhou, N.

N. Zhou, T. Dong, and J. Wu, “Novel image encryption algorithm based on multiple-parameter discrete fractional random transform,” Opt. Commun. 283(15), 3037–3042 (2010).
[Crossref]

Adv. Opt. Photonics (2)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1(3), 589–636 (2009).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

W. Chen, “Optical multiple-image encryption using three-dimensional space,” IEEE Photonics J. 8(2), 6900608 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

L. Chen, J. Liu, J. Wen, H. Mao, F. Ge, and D. Zhao, “Pseudo color image encryption based on three-beams interference principle and common vector composition,” Opt. Commun. 338, 110–116 (2015).
[Crossref]

A. Alfalou, C. Brosseau, and N. Abdallah, “Simultaneous compression and encryption of color video images,” Opt. Commun. 338, 371–379 (2015).
[Crossref]

N. Zhou, T. Dong, and J. Wu, “Novel image encryption algorithm based on multiple-parameter discrete fractional random transform,” Opt. Commun. 283(15), 3037–3042 (2010).
[Crossref]

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on coherent diffractive imaging using multiple wavelengths,” Opt. Commun. 285(3), 225–228 (2012).
[Crossref]

Opt. Eng. (1)

N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42(6), 1583–1588 (2003).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Opt. Lasers Eng. (1)

Y. Qin, Z. Wang, Q. Pan, and Q. Gong, “Optical color-image encryption in the diffractive-imaging scheme,” Opt. Lasers Eng. 77, 191–202 (2016).
[Crossref]

Opt. Lett. (9)

A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35(11), 1914–1916 (2010).
[Crossref] [PubMed]

W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35(22), 3817–3819 (2010).
[Crossref] [PubMed]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
[Crossref] [PubMed]

A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30(13), 1644–1646 (2005).
[Crossref] [PubMed]

X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31(8), 1044–1046 (2006).
[Crossref] [PubMed]

Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
[Crossref] [PubMed]

W. Liu, Z. Liu, and S. Liu, “Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm,” Opt. Lett. 38(10), 1651–1653 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The first encryption level of the proposal.
Fig. 2
Fig. 2 The second encryption level of the proposal (i.e. the optical setup of DIBE). M, phase only mask; CCD, charge-coupled device.
Fig. 3
Fig. 3 (a) The plaintext of Lena; (b) the plaintext of Cameraman; (c) the plaintext of Peppers; (d) the SS; (e) the RM; (f) the HM; (g) the ciphertext.
Fig. 4
Fig. 4 The decrypted images when all secret keys are correct.
Fig. 5
Fig. 5 (a) The dependence of CC on iteration number with wrong M0; (b) the recovered HM corresponding to (a) after 500 iterations; (c) the recovered Lena from (b); (d) the dependence of CC on iteration number with wrong d1;(e) the retrieved HM after 500 iterations corresponding to (d); (f) the recovered Lena from (e); (g) the dependence of CC on iteration number with incorrect λ; (h) the retrieved HM after 500 iterations corresponding to (g); (i) the recovered Lena from (h).
Fig. 6
Fig. 6 The decrypted images (a) Lena (b) Cameraman (c) Peppers when RM is incorrect; the decrypted images (d) Lena (e) Cameraman (f) Peppers when the sign matrix is incorrect.
Fig. 7
Fig. 7 The robustness of the proposal against occlusion attacks. (a) 5% occlusion; (b), (c), (d) corresponding recovered images from (a); (e) 10% occlusion; (f), (g), (h) corresponding reconstructed images from (e).
Fig. 8
Fig. 8 The robustness of the proposal against noise attacks. (a) polluted ciphertext with β = 0.0001; (b), (c), (d) corresponding recovered images from (a); (e) polluted ciphertext with β = 0.001; (f), (g), (h) corresponding reconstructed images from (e).
Fig. 9
Fig. 9 The recovered images with the method proposed in [25].

Tables (1)

Tables Icon

Table 1 Correlation coefficients of the decrypted images in [25] and this proposal.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

NM( u,υ )=SS( u,υ )s( u,υ ),
s( u,υ )={ 1SS( u,υ )0 1SS( u,υ )<0 .
HM( u,υ )=αNM( u,υ )+( 1α )RM( u,υ ),
I( u 3 , υ 3 )= | FrT λ [ FrT λ { FrT λ [ HM( u,υ ) M 0 ( u,υ ); d 1 ] M 1 ( u 1 , υ 1 ); d 2 } M 2 ( u 2 , υ 2 ); d 3 ] | 2 ,
U n ( u 3 , υ 3 ) =FrT λ [ FrT λ { FrT λ [ T n ( u,υ ) M 0 ( u,υ ); d 1 ] M 1 ( u 1 , υ 1 ); d 2 } M 2 ( u 2 , υ 2 ); d 3 ].
U n ( u 3 , υ 3 ) ¯ =I ( u 3 , υ 3 ) 1/2 U n ( u 3 , υ 3 ) / | U n ( u 3 , υ 3 ) | .
T n ( u,υ ) ¯ = | FrT λ [ FrT λ { FrT λ [ U n ( u 3 , υ 3 ) ¯ ; d 3 ] M 2 ( u 2 , υ 2 ); d 2 } M 1 ( u 1 , υ 1 ); d 1 ] | 2 .
T n ( u,υ ) ¯ = T n ( u,υ ) ¯ ×MSK+RM( u,υ )×( 1MSK ),
Error 1 = [ | T n ( x,y ) || T n1 ( x,y ) | ] 2 ,
NM( u,υ )= α 1 [ HM( u,υ )( 1α )RM( u,υ ) ].
SS( u,υ )=NM( u,υ )s( u,υ ).

Metrics