Abstract

Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]

V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P. Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren, and S. P. Polyutov
Opt. Mater. Express 7(2) 555-568 (2017)

Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles

Jing Niu, Young Jun Shin, Jaesung Son, Youngbin Lee, Jong-Hyun Ahn, and Hyunsoo Yang
Opt. Express 20(18) 19690-19696 (2012)

Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
    [Crossref]
  2. G. Shvets and I. Tsukerman, eds., Plasmonics and Plasmonic Metamaterials: Analysis and Applications (World Scientific, 2012).
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into the future,” Opt. Express 19, 22029 (2011).
    [Crossref] [PubMed]
  4. V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).
  5. L. A. Dykman and N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).
    [Crossref] [PubMed]
  6. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  7. A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163 (2009).
    [Crossref]
  8. A. P. Gavrilyuk and S. V. Karpov, “Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields,” Appl. Phys. B 102, 65–72 (2011).
    [Crossref]
  9. A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
    [Crossref]
  10. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
    [Crossref]
  11. A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
    [Crossref]
  12. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
    [Crossref]
  13. G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
    [Crossref]
  14. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
    [Crossref]
  15. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
    [Crossref]
  16. J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University, 1960).
  17. C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, 1986).
  18. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  19. M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
    [Crossref]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  21. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [Crossref]
  22. O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
    [Crossref]
  23. D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
    [Crossref]
  24. W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
    [Crossref] [PubMed]

2016 (3)

L. A. Dykman and N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).
[Crossref] [PubMed]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
[Crossref]

2015 (1)

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

2014 (1)

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

2013 (2)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

2012 (1)

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

2011 (2)

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into the future,” Opt. Express 19, 22029 (2011).
[Crossref] [PubMed]

A. P. Gavrilyuk and S. V. Karpov, “Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields,” Appl. Phys. B 102, 65–72 (2011).
[Crossref]

2009 (1)

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163 (2009).
[Crossref]

2005 (1)

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
[Crossref]

2000 (1)

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

1996 (1)

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

1994 (1)

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1961 (1)

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

Alabastri, A.

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Angelis, F.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Aouaj, A.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Armstrong, R. L.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Ben-David, T.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Boltasseva, A.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

Bondarchuk, I.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Bourret, A.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Cheyssac, P.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dalacu, D.

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

Das, G.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

De Angelis, F.

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

Deutscher, G.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Dmitruk, I.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Dykman, L. A.

L. A. Dykman and N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).
[Crossref] [PubMed]

Ershov, A. E.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Fabrizio, E.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Gavrilyuk, A. P.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields,” Appl. Phys. B 102, 65–72 (2011).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163 (2009).
[Crossref]

Giugni, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

González-Rubio, G.

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
[Crossref]

Guerrero-Martínez, A.

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
[Crossref]

Guler, U.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

Gurin, V.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Hu, N.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Inasawa, S.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
[Crossref]

Jia, M.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Karpov, S. V.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields,” Appl. Phys. B 102, 65–72 (2011).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163 (2009).
[Crossref]

Khlebtsov, N. G.

L. A. Dykman and N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

Kim, W.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, 1986).

Klimov, V. V.

V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).

Kofman, R.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Kotko, A.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
[Crossref]

Lereah, Y.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Li, K.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Liao, G.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Liberale, C.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Liz-Marzán, L. M.

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
[Crossref]

Luo, W.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Malerba, M.

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

Markel, V. A.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Martinu, L.

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

Otter, M.

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

Penisson, J.

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Proietti Zaccaria, R.

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

Reddy, H.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Semina, P. N.

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Shalaev, V. M.

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Stockman, M. I.

Su, K.

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

Sugiyama, M.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
[Crossref]

Toma, A.

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Tuccio, S.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
[Crossref]

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
[Crossref]

Yeshchenko, O.

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Zaccaria, R.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Ziman, J.

J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University, 1960).

Accounts Chem. Res. (1)

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Accounts Chem. Res. 49, 678–686 (2016).
[Crossref]

ACS Photonics (1)

A. Alabastri, A. Toma, M. Malerba, F. De Angelis, and R. Proietti Zaccaria, “High temperature nanoplasmonics: the key role of nonlinear effects,” ACS Photonics 2, 115–120 (2015).
[Crossref]

Appl. Phys. B (3)

A. P. Gavrilyuk and S. V. Karpov, “Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields,” Appl. Phys. B 97, 163 (2009).
[Crossref]

A. P. Gavrilyuk and S. V. Karpov, “Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields,” Appl. Phys. B 102, 65–72 (2011).
[Crossref]

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, and P. N. Semina, “Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles,” Appl. Phys. B 115, 547–560 (2014).
[Crossref]

Appl. Phys. Lett. (1)

D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon resonance of au/sio2 nanocomposite films,” Appl. Phys. Lett. 77, 4283–4285 (2000).
[Crossref]

Biomaterials (1)

L. A. Dykman and N. G. Khlebtsov, “Multifunctional gold-based nanocomposites for theranostics,” Biomaterials 108, 13–34 (2016).
[Crossref] [PubMed]

J. Chem. Phys. (1)

W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104–3111 (2005).
[Crossref]

Materials (1)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. Fabrizio, and R. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).
[Crossref]

Opt. Express (1)

Opt. Mat. Express (1)

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mat. Express 6, 2776 (2016).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. i. linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[Crossref]

Surf. Sci. (2)

O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. Penisson, and A. Bourret, “Surface melting enhanced by curvature effects,” Surf. Sci. 303, 231–246 (1994).
[Crossref]

Z. Phys. (1)

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,” Z. Phys. 161, 539–549 (1961).
[Crossref]

Other (7)

V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).

J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University, 1960).

C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, 1986).

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
[Crossref]

G. Shvets and I. Tsukerman, eds., Plasmonics and Plasmonic Metamaterials: Analysis and Applications (World Scientific, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM image of gold nanoparticles on the quartz substrate before (a) and after (b) first heating and cooling cycle in the furnace; (c) particle diameter distribution function after first heating and cooling cycle (averaged over several images); (d) experimental setup 1 — light source (250 W halogen lamp), 2 — heating element, 3 — sample, 4 — highspeed-spectrometer, 5 — K-type thermocouple, 6 — temperature controller, 7 — PC.

Fig. 2
Fig. 2

(a) — experimental evolution of Au nanoparticle extinction spectrum and reduction of the amplitude of SPR from room to melting temperatures 20–1120 °C (see the legend); (b) — the same evolution of differential spectra and comparison with calculations based on the Mie theory using dielectric constants for gold at same temperature values. ΔE = E(1120 °C) − E(T) and ΔQe = Qe(1064 °C) − Qe(T).

Fig. 3
Fig. 3

Temperature dependence of SPR amplitude of Au nanoparticles in experiment ΔEmax and in calculations ΔQe( max ).

Metrics